Subscribe to RSS
DOI: 10.1055/s-2008-1078503
A Novel Organocatalytic Tool for the Iminium Activation of α,β-Unsaturated Ketones
Publication History
Publication Date:
19 June 2008 (online)
Abstract
Asymmetric aminocatalysis has become a well-established and powerful synthetic tool for the chemo- and enantioselective functionalization of carbonyl compounds. Recent studies have established the unique ability of primary amine catalysis to participate in processes between sterically demanding partners, thus overcoming the inherent difficulties of chiral secondary amines in generating congested covalent intermediates. With this in mind, we introduced the primary amine catalyst salt 1, made by combining the easily available 9-amino-9-deoxy-epi-hydroquinine with N-Boc-d-phenylglycine as the chiral counteranion. Salt 1 exhibits high reactivity and selectivity in the enantioselective conjugate additions of a series of different nucleophiles to unsaturated ketones. The rationale behind the development of this general and efficient iminium activator of enones is discussed.
1 Introduction
2 Iminium Catalysis
3 Iminium Activation of Unsaturated Ketones
3.1 Chiral Primary Amines in Iminium Catalysis
3.2 Asymmetric Counteranion-Directed Catalysis
4 A New Catalyst Salt for Iminium Activation of Enones: 9-Amino-9-deoxy-epi-hydroquinine and N-Boc-d-phenylglycine
4.1 Friedel-Crafts Alkylation of Indoles
4.2 Oxa-Michael Addition
4.3 Sulfa-Michael Addition
5 Summary and Outlook
Key words
amines - asymmetric catalysis - ketones - organocatalysis - Michael additions
- For general reviews on asymmetric organocatalysis, see:
-
1a
Enantioselective
Organocatalysis
Dalko PI. Wiley-VCH; Weinheim: 2007. -
1b
Gaunt MJ.Johansson CCC.McNally A.Vo NT. Drug Discovery Today 2007, 12: 8 -
1c
List B.Yang JW. Science (Washington, D.C.) 2006, 313: 1584 - 1d The special issue devoted to ‘Asymmetric Organocatalysis’ (List, B., Ed.): Chem. Rev. 2007, 107: 5413-5883
-
2a
Barbas CF. Angew. Chem. Int. Ed. 2008, 47: 42 -
2b
List B. Chem. Commun. 2006, 819 -
2c
Marigo M.Jørgensen KA. Chem. Commun. 2006, 2001 - 3 For a review, see:
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
4a
Beeson TD.Mastracchio A.Hong J.-B.Ashton K.MacMillan DWC. Science (Washington, D.C.) 2007, 316: 582 -
4b
Jang H.-Y.Hong J.-B.MacMillan DWC. J. Am. Chem. Soc. 2007, 129: 7004 -
4c
Kim H.MacMillan DWC. J. Am. Chem. Soc. 2008, 130: 398 -
4d
Sibi MP.Hasegawa M. J. Am. Chem. Soc. 2007, 129: 4124 - For recent highlights, see:
-
4e
Mukherjee S.List B. Nature (London) 2007, 447: 152 -
4f
Bertelsen S.Nielsen M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 7356 - For reviews on asymmetric iminium ion catalysis, see:
-
5a
Lelais G.MacMillan DWC. Aldrichimica Acta 2006, 39: 79 -
5b
Erkkilä A.Majander I.Pihko PM. Chem. Rev. 2007, 107: 5416 - For recent, general reviews on organocatalytic asymmetric conjugate additions, see:
-
5c
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
5d
Vicario JL.Badia D.Carrillo L. Synthesis 2007, 2065 -
6a
Bertelsen S.Marigo M.Brandes S.Dinér P.Jørgensen KA. J. Am. Chem. Soc. 2006, 128: 12973 -
6b
Hong B.-C.Wu M.-F.Tseng H.-C.Huang G.-F.Su C.-F.Liao J.-H. J. Org. Chem. 2007, 72: 8459 -
6c
de Figueiredo RM.Fröhlich R.Christmann M. Angew. Chem. Int. Ed. 2008, 47: 1450 - For selected examples of metal-catalyzed asymmetric functionalization of ketones, see:
-
7a
Enders D.Eichenauer H. Chem. Ber. 1979, 112: 2933 -
7b
Imai M.Hagihara A.Kawasaki H.Manabe K.Koga K. J. Am. Chem. Soc. 1994, 116: 8829 -
7c
Behenna DC.Stoltz BM. J. Am. Chem. Soc. 2004, 126: 15044 -
7d
Trost BM.Xu J. J. Am. Chem. Soc. 2005, 127: 2846 -
7e
Braun M.Meier T. Synlett 2005, 2968 - For selected examples of phase-transfer catalysis, see:
-
7f
Dolling UH.Davis P.Grabowski EJJ. J. Am. Chem. Soc. 1984, 106: 446 -
7g
O’Donnel MJ.Bennett WD.Wu S. J. Am. Chem. Soc. 1989, 111: 2353 - 8 For a recent review on chiral primary
amine catalysis, see:
Peng F.Shao Z. J. Mol. Catal. A: Chem. 2008, 285: 1 - For indole alkylation, see:
-
9a
Bartoli G.Bosco M.Carlone A.Pesciaioli F.Sambri L.Melchiorre P. Org. Lett. 2007, 9: 1403 - For the oxa-Michael reaction, see:
-
9b
Carlone A.Bartoli G.Bosco M.Pesciaioli F.Ricci P.Sambri L.Melchiorre P. Eur. J. Org. Chem. 2007, 5492 - For the sulfa-Michael reaction, see:
-
9c
Ricci P.Carlone A.Bartoli G.Bosco M.Sambri L.Melchiorre P. Adv. Synth. Catal. 2008, 350: 49 - 10 Amine 2 is
easily prepared by the Mitsunobu reaction of the commercially available
hydroquinine. For the first reported preparation of 9-amino-9-deoxy-epi-quinine, see:
Brunner H.Bügler J.Nuber B. Tetrahedron: Asymmetry 1995, 6: 1699 -
11a
Mayer S.List B. Angew. Chem. Int. Ed. 2006, 45: 4193 -
11b
Martin NJA.List B. J. Am. Chem. Soc. 2006, 128: 13368 -
11c
Zhou J.List B. J. Am. Chem. Soc. 2007, 129: 7498 -
11d
Wang X.List B. Angew. Chem. Int. Ed. 2008, 47: 1119 - Asymmetric addition of C-based nucleophiles to enones: For direct vinylogous addition of α,α-dicyanoalkenes, see:
-
12a
Xie J.-W.Chen W.Li R.Zeng M.Du W.Yue L.Chen Y.-C.Wu Y.Zhu J.Deng J.-G. Angew. Chem. Int. Ed. 2007, 46: 389 - For addition of cyclic 1,3-dicarbonyl compounds, see:
-
12b
Xie J.-W.Yue L.Chen W.Du W.Zhu J.Deng J.-G.Chen Y.-C. Org. Lett. 2007, 9: 413 - For indole alkylation, see:
-
12c
Chen W.Du W.Yue L.Li R.Wu Y.Ding L.-S.Chen Y.-C. Org. Biomol. Chem. 2007, 5: 816 - For malononitrile addition, see:
-
12d
Li X.Cun L.Lian C.Zhong L.Chen Y.Liao J.Zhu J.Deng J. Org. Biomol. Chem. 2008, 6: 349 - For Diels-Alder reaction, see:
-
12e
Singh RP.Bartelson K.Wang Y.Su H.Lu X.Deng L. J. Am. Chem. Soc. 2008, 130: 2422 - For a recent ACDC approach with a multifunctional primary amine catalyst, see:
-
12f
Chen W.Du W.Duan Y.-Z.Wu Y.Yang S.-Y.Chen Y.-C. Angew. Chem. Int. Ed. 2007, 46: 7667 - Recently, in addition to their generality as iminium activators, 9-amino-9-deoxy-epi-cinchona alkaloids have also been successfully employed for the asymmetric α-functionalization of ketones via enamine catalysis. See:
-
13a
McCooey SH.Connon SJ. Org. Lett. 2007, 9: 599 -
13b
Liu T.-Y.Cui H.-L.Zhang Y.Jiang K.Du W.He Z.-Q.Chen Y.-C. Org. Lett. 2007, 9: 3671 -
13c
Zheng B.-L.Liu Q.-Z.Guo C.-S.Wang X.-L.He L. Org. Biomol. Chem. 2007, 5: 2913 - 14
Ahrendt KA.Borths CJ.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 4243. For a personal account by D. W. C. MacMillan on the rationale behind this new organocatalytic concept, see ref. 1a, Chap. 3, pp 95-120 -
15a
Jen WS.Wiener JJM.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 9874 -
15b
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 4370 -
15c
Ouellet SG.Tuttle JB.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 32 -
15d
Kunz RK.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 3240 - Selected examples: For conjugate addition of electron-rich benzenes, see:
-
16a
Paras NA.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 7894 - For Mukaiyama-Michael reaction, see:
-
16b
Brown SP.Goodwin NC.MacMillan DWC. J. Am. Chem. Soc. 2003, 125: 1192 - For addition of amines, see:
-
16c
Chen YK.Yoshida M.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 9328 - For [4+3] cycloaddition reactions, see:
-
16d
Harmata M.Ghosh SK.Hong X.Wacharasindhu S.Kirchhoefer P. J. Am. Chem. Soc. 2003, 125: 2058 - For intramolecular Diels-Alder reactions, see:
-
16e
Wilson RM.Jen WS.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 11616 -
16f
Selkälä SA.Koskinen AMP. Eur. J. Org. Chem. 2005, 1620 - For hydride addition, see:
-
16g
Yang JW.Hechavarria Fonseca MT.Vignola N.List B. Angew. Chem. Int. Ed. 2005, 44: 108 - Selected examples of enal conjugate additions: For C-nucleophiles, see:
-
17a
Brandau S.Landa A.Franzén J.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2006, 45: 4305 -
17b
Gotoh H.Masui R.Ogino H.Shoji M.Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 6853 -
17c
Enders D.Bonten MH.Raabe G. Synlett 2007, 885 - For cycloaddition reactions, see:
-
17d
Gotoh H.Hayashi Y. Org. Lett. 2007, 9: 2859 - For N-Nucleophiles, see:
-
17e
Dinér P.Nielsen M.Marigo M.Jørgensen KA. Angew. Chem. Int. Ed. 2007, 46: 1983 -
17f
Ibrahem I.Rios R.Vesely J.Zhao G.-L.Córdova A. Chem. Commun. 2007, 849 - For O-Nucleophiles, see:
-
17g
Bertelsen S.Dinér P.Johansen RL.Jørgensen KA. J. Am. Chem. Soc. 2007, 129: 1536 - For S-Nucleophiles, see:
-
17h
Marigo M.Schulte T.Franzen J.Jorgensen KA. J. Am. Chem. Soc. 2005, 127: 15710 - For P-Nucleophiles, see:
-
17i
Carlone A.Bartoli G.Bosco M.Sambri L.Melchiorre P. Angew. Chem. Int. Ed. 2007, 46: 4504 -
17j
Ibrahem I.Rios R.Vesely J.Hammar P.Eriksson L.Himo F.Córdova A. Angew. Chem. Int. Ed. 2007, 46: 4507 . For a recent review on the use of a,a-diarylprolinol ethers in aminocatalysis, see: (k) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922 -
18a
Northrup AB.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 2458 - For the use of 7 in asymmetric transfer hydrogenation of cyclic enones, see:
-
18b
Tuttle JB.Ouellet SG.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 12662 - For theoretical studies on iminium-catalyzed Diels-Alder reactions with unsaturated aldehydes and ketones, see:
-
18c
Gordillo R.Houk NK. J. Am. Chem. Soc. 2006, 128: 3543 - For previous studies on proline- and proline-derivative-catalyzed addition of carbogenic nucleophiles to cyclic enones, see:
-
19a
Yamaguchi M.Shiraishi T.Hirama M. J. Org. Chem. 1996, 61: 3520 ; and references cited therein -
19b
Hanessian S.Pharm V. Org. Lett. 2000, 2: 2975 -
20a
Halland N.Hazell RG.Jørgensen KA. J. Org. Chem. 2002, 67: 8331 -
20b
Halland N.Aburel PS.Jørgensen KA. Angew. Chem. Int. Ed. 2003, 42: 661 -
20c
Halland N.Aburel PS.Jørgensen KA. Angew. Chem. Int. Ed. 2004, 43: 1272 -
20d
Pulkkinen J.Aburel PS.Halland N.Jørgensen KA. Adv. Synth. Catal. 2004, 346: 1077 - 21
Heine A.DeSantis G.Luz JG.Mitchell M.Wong C.-H. Science (Washington, D.C.) 2001, 294: 369 ; and references cited therein -
22a
Clark RA.Parker DC. J. Am. Chem. Soc. 1971, 93: 7257 -
22b
Boyd DR.Jennings WB.Waring LC. J. Org. Chem. 1986, 51: 992 -
22c
Capon B.Wu Z.-P. J. Org. Chem. 1990, 55: 2317 ; and references cited therein -
23a
List B. Tetrahedron 2002, 58: 5573 -
23b
Movassaghi M.Jacobsen EN. Science (Washington, D.C.) 2002, 298: 1904 - For selected examples, see:
-
24a
Bassan A.Zou W.Reyes E.Himo F.Córdova A. Angew. Chem. Int. Ed. 2005, 44: 7028 -
24b
Ramasastry SSV.Zhang H.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2007, 129: 288 -
24c
Luo S.Xu H.Li J.Zhang L.Cheng J.-P. J. Am. Chem. Soc. 2007, 129: 3074 ; and references cited therein -
25a
Xu Y.Zou W.Sundén H.Ibrahem I.Córdova A. Adv. Synth. Catal. 2006, 348: 418 -
25b
Xu Y.Córdova A. Chem. Commun. 2006, 460 ; and references cited therein - For very meaningful examples of the potential of primary amines in enamine activation of ketones, see:
-
26a
Tsogoeva SB.Wei S. Chem. Commun. 2006, 1451 -
26b
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170 - See also:
-
26c
Lalonde MP.Chen Y.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 6366 -
27a
Ishihara K.Nakano K. J. Am. Chem. Soc. 2005, 127: 10504 - See also:
-
27b
Sakakura A.Suzuki K.Nakano K.Ishihara K. Org. Lett. 2006, 8: 2229 -
27c
Ishihara K.Nakano K. J. Am. Chem. Soc. 2007, 129: 8930 -
28a
Kim H.Yen C.Preston P.Chin J. Org. Lett. 2006, 8: 5239 -
28b
Halland N.Hansen T.Jørgensen KA. Angew. Chem. Int. Ed. 2003, 42: 4955 - For an early example of iminium activation of cyclic enones by primary amine catalysis, see:
-
28c
Tsogoeva SB.Jagtap SB. Synlett 2004, 2624 - For recent reviews, see:
-
29a
Akiyama T. Chem. Rev. 2007, 107: 5744 -
29b
Connon SJ. Angew. Chem. Int. Ed. 2006, 45: 3909 -
30a
Bartoli G.Bosco M.Carlone A.Locatelli M.Mazzanti A.Sambri L.Melchiorre P. Chem. Commun. 2007, 722 -
30b
Bartoli G.Bosco M.Carlone A.Cavalli A.Locatelli M.Mazzanti A.Ricci P.Sambri L.Melchiorre P. Angew. Chem. Int. Ed. 2006, 45: 4966 -
30c
Bartoli G.Bosco M.Carlone A.Locatelli M.Melchiorre P.Sambri L. Angew. Chem. Int. Ed. 2005, 44: 6219 - 31 For a recent review, see:
Tian S.-K.Chen Y.Hang J.Tang L.McDaid P.Deng L. Acc. Chem. Res. 2004, 37: 621 - For reviews on asymmetric catalysis by chiral hydrogen-bonding donors, see:
-
32a
Taylor MS.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 1520 -
32b
Marcelli T.van Maarseveen JH.Hiemstra H. Angew. Chem. Int. Ed. 2006, 45: 7496 - For a review, see:
-
33a
Connon SJ. Chem.-Eur. J. 2006, 12: 5418 - For leading references, see:
-
33b
Vakulya B.Varga S.Csámpai A.Soós T. Org. Lett. 2005, 7: 1967 -
33c
McCooey SH.Connon SJ. Angew. Chem. Int. Ed. 2005, 44: 6367 -
34a
Sundberg RJ. Indoles Academic Press; San Diego: 1996. p.175 -
34b
Nicolaou KC.Snyder SA. Classics in Total Synthesis II Wiley-VCH; Weinheim: 2003. - For recent reviews on catalytic asymmetric Friedel-Crafts reactions, see:
-
35a
Bandini M.Melloni A.Umani-Ronchi A. Angew. Chem. Int. Ed. 2004, 43: 550 -
35b
Jørgensen KA. Synthesis 2003, 1117 - For selected, recent examples, see:
-
36a
Jensen KB.Thorhauge J.Hazell RG.Jørgensen KA. Angew. Chem. Int. Ed. 2001, 40: 160 -
36b
Palomo C.Oiarbide M.Kardak BG.Garcia JM.Linden A. J. Am. Chem. Soc. 2005, 127: 4154 -
36c
Evans DA.Fandrick KR.Song H.-J.Scheidt KA.Xu R. J. Am. Chem. Soc. 2007, 129: 10029 -
37a
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 -
37b
Austin JF.Kim S.-G.Sinz CJ.Xiao W.-J.MacMillan DWC. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5482 -
37c
Lee S.MacMillan DWC. J. Am. Chem. Soc. 2007, 129: 15438 - 38
Bandini M.Fagioli M.Melchiorre P.Umani-Ronchi A. Tetrahedron Lett. 2003, 44: 5843 - For organocatalytic indole alkylation with enones promoted by an achiral amine, see:
-
39a
Li D.-P.Guo Y.-C.Ding Y.Xiao W.-J. Chem. Commun. 2006, 799 - In this report, an initial attempt to perform an asymmetric version of the reaction using the MacMillan second generation imidazolidinone 7 afforded poor selectivity (28% ee). Recently, a low selectivity (up to 29% ee) addition of indole to chalcone promoted by d-camphorsulfonic acid was reported, see:
-
39b
Zhou W.Xu L.-W.Li L.Yang L.Xia C.-G. Eur. J. Org. Chem. 2006, 5225 - See also:
-
39c
Tang H.-Y.Lu A.-D.Zhou Z.-H.Zhao G.-F.He L.-N.Tang C.-C. Eur. J. Org. Chem. 2008, 1406 - For a recent, Brønsted acid catalyzed asymmetric F-C alkylation of indoles with unsaturated α-keto esters, see:
-
39d
Rueping M.Nachtsheim BJ.Moreth SA.Bolte M. Angew. Chem. Int. Ed. 2008, 47: 593 -
40a
Török B.Abid M.London G.Esquibel J.Török MS.Mhadgut C.Yan P.Prakash GKS. Angew. Chem. Int. Ed. 2005, 44: 3086 -
40b
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 . In reference 12e the possibility that 9-amino-9-deoxy-epi-cinchona alkaloids can act as bifunctional activators of both the unsaturated ketones and the nucleophiles was advanced -
41a
Vanderwal CD.Jacobsen EN. J. Am. Chem. Soc. 2004, 126: 14724 -
41b
Miyabe H.Matsumura A.Moriyama K.Takemoto Y. Org. Lett. 2004, 6: 4631 -
41c
Bertelsen S.Dinér P.Johansen RL.Jørgensen KA. J. Am. Chem. Soc. 2007, 129: 1536 -
41d
Dinér P.Nielsen M.Bertelsen S.Niess B.Jørgensen KA. Chem. Commun. 2007, 3646 -
42a
Bode SE.Wolberg M.Müller M. Synthesis 2006, 557 -
42b
Evans DA.Hoveyda AH. J. Org. Chem. 1990, 55: 5190 - 43
Carreira EM.Lee W.Singer RA. J. Am. Chem. Soc. 1995, 117: 3649 -
44a
Fraústo da Silva JR.Williams RJP. The Biological Chemistry of the Elements Oxford University Press; New York: 2001. -
44b
Metzner P.Thuillier A. Sulfur Reagents in Organic Synthesis Academic Press; New York: 1994. -
44c
Nudelman A. The Chemistry of Optically Active Sulfur Compounds Gordon & Breach; New York: 1984. -
44d
Chatgilialoglu C.Asmus K.-D. Sulfur-Centered Reactive Intermediates in Chemistry and Biology Springer; New York: 1991. - 45 For a comprehensive review on asymmetric
sulfa-Michael additions, see:
Enders D.Lüttgen K.Narine AA. Synthesis 2007, 959 - For selected examples, see:
-
46a
Kanemasa S.Oderaotoshi Y.Wada E. J. Am. Chem. Soc. 1999, 121: 8675 - For an organocatalytic asymmetric strategy, see:
-
46b
Zu L.Wang J.Li H.Xie H.Jiang W.Wang W. J. Am. Chem. Soc. 2007, 129: 1036 - For organocatalytic asymmetric strategies, see:
-
47a
Hiemstra H.Wynberg H. J. Am. Chem. Soc. 1981, 103: 417 -
47b
McDaid P.Chen Y.Deng L. Angew. Chem. Int. Ed. 2002, 41: 338 -
48a
Brandau S.Maerten E.Jørgensen KA. J. Am. Chem. Soc. 2006, 128: 14986 -
48b
Wang W.Li H.Wang J.Zu L. J. Am. Chem. Soc. 2006, 128: 10354 -
48c
See also reference 17h.
-
49a
Skarżewski J.Zielińska-Blajet M.Turowska-Tyrk I. Tetrahedron: Asymmetry 2001, 12: 1923 -
49b
Li H.Zu L.Wang J.Wang W. Tetrahedron Lett. 2006, 47: 3145 - 51
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley-VCH; New York: 1999. Chap. 6. p.454 - 52 In the absence of an acidic counteranion,
the non-protonated 9-amino-9-deoxy-epi-hydroquinine
is still able to promote the sulfa-Michael addition, albeit with
lower reactivity, presumably by activating the nucleophilic component 36 through Brønsted-base catalysis;
however, the observed low optical purity (8% ee) together
with reversal in the stereochemistry supports an iminium ion activation
mode of catalysis when the chiral salt 1 is
employed. The iminium ion activation path is also corroborated by
the lower reactivity observed when more encumbered α-substituted
enones are employed. For similar mechanistic considerations on this type
of catalyst salt, see:
Wang X.Reisinger CM.List B. J. Am. Chem. Soc. 2008, 130: 6070 - For reviews on organocatalytic domino reactions, see:
-
54a
Enders D.Grondal C.Hüttl MRM. Angew. Chem. Int. Ed. 2007, 46: 1570 -
54b
Guillena G.Ramón DJ.Yus M. Tetrahedron: Asymmetry 2007, 18: 693
References
The results obtained when using 9-amino-9-deoxy-epi-hydroquinine (2) in combination with various acidic counterparts (TFA, PTSA, N-Boc-l-phenylalanine) in the organocatalyzed SMA did not show any appreciable improvement in terms of enantioselectivity, confirming the superior efficiency of the catalyst salt 1. Remarkably, consistent with previous observations, use of the opposite enantiomeric counteranion (N-Boc-l-phenylglycine) afforded the same enantiomeric sulfa-Michael adduct with lower reactivity and selectivity, illustrating a marked case of a matched/mismatched catalyst-ion pair combination.
53Preliminary studies on conjugate additions to (E)-4-phenyl-3-buten-2-one (11) promoted by catalyst salt 1 afforded encouraging results: aza-Michael addition of N-(benzyl-oxycarbonyl)hydroxylamine: 96% ee; phospha-Michael addition of diphenylphosphine: 56% ee.