Synlett 2008(15): 2275-2278  
DOI: 10.1055/s-2008-1078205
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

New Route to Natural Camptothecin through Isomünchnone Cycloaddition

Alice Kanazawa*, Mauro N. Muniz, Barbora Baumlová, Natalie Ljungdahl, Andrew E. Greene
Département de Chimie Moléculaire (SERCO), UMR 5250, ICMG FR 2650, CNRS Université Joseph Fourier, BP 53, 38041 Grenoble, France
Fax: +33(4)76635754; e-Mail: Alice.Kanazawa@ujf-grenoble.fr;
Further Information

Publication History

Received 23 May 2008
Publication Date:
21 August 2008 (online)

Abstract

A novel approach to camptothecin by [3+2] cycloaddition of an isomünchnone intermediate is described.

    References and Notes

  • 1 Wall ME. Wani MC. Cook CE. Palmer KH. McPhail AT. Sim GA. J. Am. Chem. Soc.  1966,  88:  3888 
  • 2 Hsiang Y.-H. Hertzberg R. Hecht S. Liu L. J. Biol. Chem.  1985,  260:  14873 
  • 3 Saltz LB. Cox JV. Blanke C. Rosen LS. Fehrenbacher L. Moore MJ. Maroun JA. Ackland SP. Locker PK. Pirotta N. Elfring GL. Miller LL.
    N. Engl. J. Med.  2000,  343:  905 
  • 4 Gore M. ten Bokkel Huinink W. Carmichael J. Gordon A. Davidson N. Coleman R. Spaczynski M. Heron JF. Bolis G. Malmstrom H. Malfetano J. Scarabelli C. Vennin P. Ross G. Fields SZ. J. Clin. Oncol.  2001,  19:  1893 
  • 5a Butler MS. Nat. Prod. Rep.  2008,  25:  475 
  • 5b Butler MS. Nat. Prod. Rep.  2005,  22:  162 
  • 5c Cragg GM. Newman DJ. J. Nat. Prod.  2004,  67:  332 
  • For reviews on camptothecin and its derivatives, see:
  • 6a Cuendet M. Pezzuto JM. In Modern Alkaloids: Structure, Isolation, Synthesis and Biology   Fattorusso E. Taglialatela-Scafati O. Wiley-VCH; Weinheim: 2008.  Chap. 2. p.29-33  
  • 6b Lorence A. Nessler CI. Phytochemistry  2004,  65:  2735 
  • 6c Thomas CJ. Rahier NJ. Hecht SM. Bioorg. Med. Chem.  2004,  12:  1585 
  • 6d Pizzolato JF. Saltz LB. Lancet  2003,  361:  2235 
  • 6e Du W. Tetrahedron  2003,  59:  8649 
  • 6f Lansiaux A. Bailly C. Bull. Cancer  2003,  90:  239 
  • 6g Torck M. Pinkas M. J. Pharm. Belg.  1996,  51:  200 
  • 6h Camptothecins: New Anticancer Agents   Potmesil M. Pinedo H. CRC Press; Boca Raton: 1995. 
  • 6i Sawada S. Yokokura T. Miyasaka T. Curr. Pharm. Des.  1995,  1:  113 
  • 6j Hutchinson CR. Tetrahedron  1981,  37:  1047 
  • For recent syntheses of (20S)-camptothecin, see:
  • 7a Zhou H.-B. Liu G.-S. Yao Z.-J. Org. Lett.  2007,  9:  2003 
  • 7b Chavan SP. Pathak AB. Kalkote UR. Synlett  2007,  2635 
  • 7c Peters R. Althaus M. Nagy A.-L. Org. Biomol. Chem.  2006,  4:  498 
  • 7d Chavan SP. Venkatraman MS. ARKIVOC  2005,  (iii):  165 
  • 8a Raolji GB. Garçon S. Greene AE. Kanazawa A. Angew. Chem. Int. Ed.  2003,  42:  5059 
  • 8b Anderson RJ. Raolji GB. Kanazawa A. Greene AE. Org. Lett.  2005,  7:  2989 
  • 8c Babjak M. Kanazawa A. Andersen RJ. Greene AE. Org. Biomol. Chem.  2006,  4:  407 
  • 8d Tang C.-J. Babjak M. Anderson RJ. Greene AE. Kanazawa A. Org. Biomol. Chem.  2006,  4:  3557 
  • 9a Danishefsky S. Bryson TA. Puthenpurayil J. J. Org. Chem.  1975,  40:  796 
  • 9b Boger DL. Hong J. J. Am. Chem. Soc.  1998,  120:  1218 
  • For reviews on isomünchnone cycloadditions, see:
  • 10a McMills MC. Wright D. In The Chemistry of Heterocyclic Compounds: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products   Padwa A. Pearson WH. John Wiley and Sons; New York: 2002.  p.253-314  
  • 10b Mehta G. Muthusamy S. Tetrahedron  2002,  58:  9477 
  • 10c Padwa A. Top. Curr. Chem.  1997,  189:  121 
  • 10d Padwa A. Weingarten MD. Chem. Rev.  1996,  96:  223 
  • 10e Osterhout MH. Nadler WR. Padwa A. Synthesis  1994,  123 
  • 11a Marino JP. Osterhout MH. Price AT. Sheehan SM. Padwa A. Tetrahedron Lett.  1994,  35:  849 
  • 11b For the use of this reagent for similar cyclizations, see: Padwa A. Prein M. J. Org. Chem.  1997,  62:  6842 
  • 13 Guy RK. DiPietro RA. Synth. Commun.  1992,  22:  687 
  • 16a

    Compound 8b: mp 246-248 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.49 (t, J = 7.0 Hz, 3 H), 4.50 (q, J = 7.1 Hz, 2 H), 5.23 (s, 2 H), 7.03 (s, 1 H), 7.67 (pseudo t, J = 7.3 Hz, 1 H), 7.83 (pseudo t, J = 7.2 Hz, 1 H), 7.93 (d, J = 8.3 Hz, 1 H), 8.24 (d, J = 8.5 Hz, 1 H), 8.37 (s, 1 H). ¹³C NMR (75 MHz, CDCl3-MeOH, 4:1): δ = 14.1, 50.0, 61.9, 94.6, 128.0, 128.3, 128.4, 129.2, 129.3, 130.6, 131.4, 148.5, 149.7, 151.3, 155.9, 159.3, 171.5, 175.6. IR: 3447, 1660, 1616
    cm. MS: m/z = 323 [M + H+]. Anal. Calcd for C18H14N2O4: C, 67.08; H, 4.38; N, 8.70. Found: C, 67.23; H, 4.37; N, 8.71.

  • 16b For an alternative synthesis, see: Liao TK. Nyberg WH. Cheng CC. J. Heterocycl. Chem.  1971,  8:  373 
  • 23 Warner CR. Walsh EJ. Smith RF. J. Chem. Soc.  1962,  1232 
  • 24a Yabu K. Masumoto S. Yamasaki S. Hamashima Y. Kanai M. Du W. Curran DP. Shibasaki M. J. Am. Chem. Soc.  2001,  123:  9908 
  • 24b Yabu K. Masumoto S. Kanai M. Shibasaki M. Heterocycles  2003,  59:  369 
12

Compound 5: mp 215-216 ˚C (dec.). ¹H NMR (300 MHz, CD2Cl2): δ = 1.29 (t, J = 7.1 Hz, 3 H), 4.31 (q, J = 7.1 Hz, 2 H), 5.08 (s, 2 H), 7.69 (pseudo t, J = 7.5 Hz, 1 H), 7.82 (pseudo t, J = 7.2 Hz, 1 H), 7.93 (d, J = 7.9 Hz, 1 H), 8.36 (d, J = 7.2 Hz, 2 H). ¹³C NMR (75 MHz, CD2Cl2): δ = 14.6, 46.8, 62.5, 71.0, 128.6, 129.6, 130.0, 130.9, 131.2, 131.4, 132.2, 149.4, 150.1, 161.0, 161.5, 165.0. IR: 2142, 1736, 1717, 1655 cm. MS: m/z = 325 [M + H+]. HRMS: m/z [M + H+] calcd for C16H13N4O4: 325.0937; found: 325.0952.

14

Compound 7: mp 169-170 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.14 (t, J = 7.1 Hz, 3 H), 4.17-4.29 (m, 3 H), 4.81-4.94 (m, 3 H), 5.01 (s, 2 H), 6.30 (d, J = 2.7 Hz, 1 H), 7.25-7.40 (m, 5 H), 7.58 (pseudo t, J = 8.0 Hz, 1 H), 7.75 (pseudo t,
J = 8.5 Hz, 1 H), 7.83 (d, J = 8.2 Hz, 1 H), 8.12-8.14 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.1, 48.4, 62.8, 73.1, 80.5, 81.1, 101.7, 127.5, 127.9, 128.0 (2 ×), 128.2, 128.5, 128.6, 129.7, 130.3, 130.8, 137.1, 137.9, 149.0, 152.4, 166.6, 168.6. IR: 3428, 1744, 1659 cm. MS: m/z = 431 [M + H+]. Anal. Calcd for C25H22N2O5: C, 69.76; H, 5.16; N, 6.51. Found: C, 69.48; H, 5.04; N, 6.41.

15

Compound 8a: mp 201-203 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.35 (t, J = 7.2 Hz, 3 H), 4.42 (q, J = 7.1 Hz, 2 H), 5.22 (s, 2 H), 5.35 (s, 2 H), 7.17 (s, 1 H), 7.30-7.50 (m, 5 H), 7.66 (pseudo t, J = 7.6 Hz, 1 H), 7.82 (pseudo t, J = 8.3 Hz, 1 H), 7.91 (d, J = 7.8 Hz, 1 H), 8.20 (d, J = 8.5 Hz, 1 H), 8.32 (s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 14.2, 49.2, 61.4, 71.1, 89.6, 109.6, 127.1, 128.1, 128.2, 128.31, 128.34, 128.7, 129.2, 129.6, 130.6, 131.2, 135.3, 147.8, 148.7, 152.0, 159.0, 164.9, 166.2. IR: 1718, 1651, 1602 cm. MS: m/z = 413 [M + H+]. Anal. Calcd for C25H20N2O4: C, 72.81; H, 4.89; N, 6.80. Found: C, 72.70; H, 4.84; N, 6.59.

17

Compound 8c: mp 205-207 ˚C (dec.). ¹H NMR (300 MHz, CDCl3): δ = 1.42 (t, J = 7.2 Hz, 3 H), 4.46 (q, J = 7.2 Hz, 2 H), 5.28 (s, 2 H), 7.28 (s, 1 H), 7.70 (pseudo t, J = 8.1 Hz, 1 H), 7.85 (pseudo t, J = 8.4 Hz, 1 H), 7.95 (d, J = 7.7 Hz, 1 H), 8.23 (d, J = 8.4 Hz, 1 H), 8.41 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 13.7, 50.8, 62.5, 94.8, 115.7, 116.2, 120.5, 128.1, 128.5, 128.7, 129.5, 131.1, 131.6, 148.7, 149.0, 150.4, 156.9, 158.1, 161.6. IR: 1730, 1654, 1616
cm. MS: m/z = 455 [M + H+]. Anal. Calcd for C19H13F3N2O6S: C, 50.23; H, 2.89; N, 6.17. Found: C, 50.11; H, 2.99; N, 6.10.

18

Compound 9: mp 261-263 ˚C (dec.). ¹H NMR (300 MHz, CDCl3): δ = 1.46 (t, J = 7.2 Hz, 3 H), 4.52 (q, J = 7.1 Hz, 2 H), 5.30 (s, 2 H), 7.20-7.70 (m, 9 H), 7.84 (pseudo t, J = 7.7 Hz, 1 H), 7.95 (d, J = 8.1 Hz, 1 H), 8.26 (d, J = 8.4 Hz, 1 H), 8.40 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 14.4, 49.9, 61.8, 97.1, 122.5, 122.9, 127.4, 127.9, 128.1, 128.2, 128.8, 129.0, 129.3, 129.5, 130.5, 131.0, 135.8, 136.8, 145.7, 147.1, 148.7, 152.4, 158.7, 166.3. IR: 1723, 1640, 1603
cm. MS: m/z = 409 [M + H+]. Anal. Calcd for C26H20N2O3: C, 76.46; H, 4.94; N, 6.86. Found: C, 76.37; H, 4.99; N, 6.67.

19

Compound 10a: mp 261-263 ˚C (dec.). ¹H NMR (300 MHz, DMSO-d 6): δ = 4.74 (d, J = 5.1 Hz, 2 H), 4.99 (t, J = 5.1 Hz, 1 H), 5.25 (s, 2 H), 7.30-7.50 (m, 3 H), 7.60-7.90 (m, 7 H), 8.10-8.25 (m, 2 H), 8.67 (s, 1 H). ¹³C NMR (100 MHz, CDCl3-MeOH, 4:1): δ = 49.8, 55.9, 99.4, 122.5, 126.4, 127.1, 127.6, 127.9, 128.0, 128.1, 128.2, 128.4, 128.5, 128.6, 128.9, 130.5, 131.3, 135.8, 136.3, 143.5, 147.4, 148.2, 152.3, 161.9. IR: 3310, 1652, 1580, 1566 cm. MS: m/z = 367 [M + H+]. HRMS: m/z [M + H+] calcd for C24H19N2O2: 367.1447; found: 367.1455.

20

Compound 10b: mp 247-248 ˚C (dec.). ¹H NMR (300 MHz, CDCl3): δ = 0.16 (s, 6 H), 0.93 (s, 9 H), 5.02 (s, 2 H), 5.27 (s, 2 H), 7.27-7.47 (m, 5 H), 7.59-7.73 (m, 4 H), 7.82 (pseudo t, J = 7.7 Hz, 1 H), 7.92 (d, J = 7.4 Hz, 1 H), 8.24 (d, J = 8.5 Hz, 1 H), 8.35 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -5.1, 18.3, 26.0, 49.9, 56.6, 88.4, 98.4, 124.5, 127.2, 127.4, 127.5, 128.0, 128.1, 128.7, 128.8, 129.0, 129.6, 130.3, 130.9, 134.9, 136.6, 143.6, 147.7, 148.6, 153.2, 161.0. IR: 1656, 1651, 1593 cm. MS: m/z = 481 [M + H+]. Anal. Calcd for C30H32N2O2Si: C, 74.87; H, 6.71; N, 5.83. Found: C, 74.87; H, 6.76; N, 5.89.

21

Compound 10c: mp 262-265 ˚C (dec.). ¹H NMR (300 MHz, CDCl3): δ = 0.14 (s, 6 H), 0.90 (s, 9 H), 5.15 (s, 2 H), 5.27 (s, 2 H), 7.63-7.66 (m, 2 H), 7.80 (pseudo t, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 8.20 (d, J = 8.5 Hz, 1 H), 8.34 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -5.4, 18.3, 25.7, 50.3, 57.2, 97.4, 127.8, 127.9, 128.5, 129.8, 130.4, 130.9, 134.6, 143.5, 145.1, 149.0, 152.6, 160.7, 192.2. IR: 1697, 1651, 1600 cm. MS: m/z = 407 [M + H+]. Anal. Calcd for C23H26N2O3Si: C, 67.95; H, 6.45; N, 6.90. Found: C, 68.12; H, 6.43; N, 6.89.

22

Compound 11: mp 200-201 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 0.12 (s, 6 H), 0.91 (s, 9 H), 1.22 (t, J = 7.2 Hz, 3 H), 2.91 (q, J = 7.2 Hz, 2 H), 4.91 (s, 2 H), 5.28 (s, 2 H), 7.16 (s, 1 H), 7.65 (pseudo t, J = 7.0 Hz, 1 H), 7.81 (pseudo t, J = 7.7 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 8.20 (d, J = 8.4 Hz, 1 H), 8.37 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -5.6, 7.6, 18.6, 25.8, 36.2, 50.3, 58.5, 98.5, 127.7, 127.8, 127.9, 128.0, 128.6, 129.6, 130.4, 130.9, 144.5, 148.7, 150.3, 152.5, 159.9, 205.6. IR: 1708, 1649, 1596 cm. MS: m/z = 435 [M + H+]. Anal. Calcd for C25H30N2O3Si: C, 69.10; H, 6.96; N, 6.45. Found: C, 69.19; H, 7.07; N, 6.55.

25

Compound (-)-12: mp 228-231 ˚C (dec.); [α]D ²² -18 (c 1.3, CHCl3). ¹H NMR (300 MHz, CDCl3): δ = 0.19 (s, 3 H), 0.20 (s, 3 H), 0.28 (s, 9 H), 0.93 (s, 9 H), 1.09 (t, J = 7.3 Hz, 3 H), 2.37 (q, J = 7.3 Hz, 2 H), 5.05 (ABq, J = 10.8 Hz, 1 H), 5.21 (ABq, J = 10.8 Hz, 1 H), 5.26 (s, 2 H), 7.58-7.66 (m, 2 H), 7.80 (pseudo t, J = 7.7 Hz, 1 H), 7.89 (d, J = 8.1 Hz, 1 H), 8.23 (d, J = 8.4 Hz, 1 H), 8.34 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = -5.4, -5.3, 1.0, 8.5, 18.5, 25.9, 37.2, 50.2, 56.6, 76.0, 99.1, 120.0, 127.5, 127.7, 128.0, 128.7, 129.8, 130.3, 130.7, 144.4, 148.9, 151.2, 152.7, 161.2. IR: 1652, 1598 cm. MS: m/z = 534 [M + H+]. HRMS: m/z [M + H+] calcd for C29H40N3O3Si2: 534.2608; found: 534.2616.

26

Dichloromethane was used as the solvent for this reaction instead of a more usual one (THF or EtCN) because of solubility problems. The reaction was performed at -20 ˚C for the same reason.

27

Analytical HPLC of 12 was performed on a Chiralpak® IA column (250 × 4.6 mm) using hexane-i-PrOH (9:1) as the eluent with a flow rate of 1.0 mL/min and UV monitoring at λ = 254 nm [t R (+)-12 = 10.2 min; t R (-)-12 = 7.5 min]. The separation was performed using the same chiral support (250 × 10 mm) and eluent with a flow rate of 5 mL/min.

28

(20S)-Camptothecin was purchased from Sigma-Aldrich.