RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078178
Silver(I) versus Gold(I) Catalysis in Benzannulation Reaction: A Versatile Access to Acridines
Publikationsverlauf
Publikationsdatum:
10. September 2008 (online)
Abstract
A silver/gold-catalysed benzannulation reaction is described. In the presence of catalytic amounts of gold and/or silver salts, the reaction of silyl enol ethers onto alkynes occurs under mild conditions to produce the corresponding polycyclic aromatic systems (acridine, quinoline or naphthalene cores) in good to high yields. Among the catalysts investigated, AgOTf has been chosen as a general catalyst for this reaction which likely proceeds through silver(I) activation of the alkynyl moiety leading to a subsequent cycloisomerisation reaction.
Key words
silver - gold - benzannulation - acridine - quinoline
- 1
Martin RE.Diederich F. Angew. Chem. Int. Ed. 1999, 38: 1350 - 2
Zaumseil J.Sirringhaus H. Chem. Rev. 2007, 107: 1296 - 3
Thomas SW.Joly GD.Swager TM. Chem. Rev. 2007, 107: 1339 - 4
Le pecq J.-B.Paoletti C. J. Mol. Biol. 1967, 27: 87 - 5
Belmont P.Bosson J.Godet T.Tiano M. Anti-Cancer Agents Med. Chem. 2007, 7: 139 - 6
Asche C.Demeunynck M. Anti-Cancer Agents Med. Chem. 2007, 7: 247 - For selected examples and their synthesis, see:
-
7a
de Koning CB.Rousseau AL.van Otterlo WAL. Tetrahedron 2003, 59: 7 -
7b
Charest MG.Siegel DR.Myers AG. J. Am. Chem. Soc. 2005, 127: 8292 - 8 For a recent review, see:
Mital A. Curr. Med. Chem. 2007, 14: 759 - For reviews, see:
-
9a
Saito S.Yamamoto Y. Chem. Rev. 2000, 100: 2901 -
9b
Rubin M.Sromek AW.Gevorgyan V. Synlett 2003, 2265 -
9c
Kotha S.Brachmachary E.Lahiri K. Eur. J. Org. Chem. 2005, 4741 -
9d
Belmont P. In Modern Approaches to the Synthesis of O- and N-Heterocycles Vol. 2:Kaufman TS.Larghi EL. Research Signpost; Kerala, India: 2007. Chap. 8. p.247-261 -
10a For
a camphorsulfonic acid activation, see:
Ciufolini MA.Weiss TJ. Tetrahedron Lett. 1994, 35: 1127 -
10b For a trifluoromethanesulfonic
acid activation, see:
Li A.Kindelin PJ.Klumpp DA. Org. Lett. 2006, 8: 1233 -
11a For
a EtAlCl2 activation, see:
Imamura K.-I.Yoshikawa E.Gevorgyan V.Yamamoto Y. Tetrahedron Lett. 1999, 40: 4081 -
11b For an ICl activation,
see:
Yao T.Campo MA.Larock RC. Org. Lett. 2004, 6: 2677 -
11c For an I(py)2BF4 activation,
see:
Barluenga J.Vazquez-Villa H.Merino I.Ballesteros A.Gonzalez JM. Chem. Eur. J. 2006, 12: 5790 -
12a
Makra F.Rohloff JC.Muehldorf AV.Link JO. Tetrahedron Lett. 1995, 36: 6815 -
12b
Deville JP.Behar V. Org. Lett. 2002, 4: 1403 -
12c
Dai W.Petersen JL.Wang KK. J. Org. Chem. 2005, 70: 6647 -
12d
Serra S.Fuganti C. Synlett 2005, 809 -
12e
Patra A.Ghorai SK.De S R.Mal D. Synthesis 2006, 2556 -
12f
Birman VB.Zhao Z.Guo L. Org. Lett. 2007, 9: 1223 -
12g
Zhou Q.-F.Yang F.Guo Q.-X.Xue S. Synlett 2007, 215 -
12h
Drochner D.Müller M. Eur. J. Org. Chem. 2001, 211 -
13a
Li H.Zhang H.-R.Petersen JL.Wang KK. J. Org. Chem. 2001, 66: 6662 -
13b
Lewis KD.Matzger AJ. J. Am. Chem. Soc. 2005, 127: 9968 - 14
Austin WF.Zhang Y.Danheiser RL. Org. Lett. 2005, 7: 3905 - 15
Dankwardt JW. Tetrahedron Lett. 2001, 34: 5809 - 16
Novak P.Pohl R.Kotora M.Hocek M. Org. Lett. 2006, 8: 2051 -
17a
Shen H.-C.Tang J.-M.Chang H.-K.Yan C.-W.Liu R.-S. J. Org. Chem. 2005, 70: 10113 -
17b
Lin M.-Y.Maddirala SJ.Liu R.-S. Org. Lett. 2005, 7: 1745 -
17c
Yamamoto Y.Hattori K.Nishiyama H. J. Am. Chem. Soc. 2006, 128: 8336 -
18a
Xi C.Chen C.Lin J.Hong X. Org. Lett. 2005, 7: 347 -
18b
Pena D.Pérez D.Guitian E.Castedo L. Eur. J. Org. Chem. 2003, 1238 -
18c
Kawasaki S.Satoh T.Miura M.Nomura M. J. Org. Chem. 2003, 68: 6836 -
18d
Tsukada N.Sugawara S.Nakaoka K.Inoue Y. J. Org. Chem. 2003, 68: 5961 -
18e
Rubina M.Conley M.Gevorgyan V. J. Am. Chem. Soc. 2006, 128: 5818 -
18f
Ohno H.Yamamoto M.Iuchi M.Tanaka T. Angew. Chem. Int. Ed. 2005, 44: 5103 -
18g
Ohno H.Iuchi M.Fujii N.Tanaka T. Org. Lett. 2007, 9: 4813 - For selected examples, see:
-
19a For an account, see:
Asao N. Synlett 2006, 1645 -
19b
Hashmi ASK.Frost TM.Bats JW. J. Am. Chem. Soc. 2000, 122: 11553 -
19c
Hashmi ASK.Wölfle M.Ata F.Hamzic M.Salathé R.Frey W. Adv. Synth. Catal. 2006, 348: 2501 -
19d
Grisé CM.Barriault L. Org. Lett. 2006, 8: 5905 -
19e
Hildebrandt D.Dyker G. J. Org. Chem. 2006, 71: 6728 -
19f
Lian J.-J.Liu R.-S. Chem. Commun. 2007, 1337 -
20a
Vollhardt KPC. Acc. Chem. Res. 1977, 10: 1 -
20b
Chouraqui G.Petit M.Aubert C.Malacria M. Org. Lett. 2004, 6: 1519 -
20c
Goswami A.Ito T.Okamoto S. Adv. Synth. Catal. 2007, 349: 2368 - 21
Mamane V.Hannen P.Fürstner A. Chem. Eur. J. 2004, 10: 4556 -
23a
For an account, see ref. 16.
-
23b
Asao N.Aikawa H. J. Org. Chem. 2006, 71: 5249 -
23c
Bull JA.Hutchings MG.Quayle P. Angew. Chem. Int. Ed. 2007, 46: 1869 - 24
Zhao J.Hughes CO.Toste FD. J. Am. Chem. Soc. 2006, 128: 7436 -
25a
Dunetz JR.Danheiser RL. J. Am. Chem. Soc. 2005, 127: 5776 -
25b
Pigge FC.Ghasedi F.Schmitt AV.Dighe MK.Rath NP. Tetrahedron 2005, 61: 5363 -
25c
Martinez-Esperon MF.Rodriguez D.Castedo L.Saà C. Org. Lett. 2005, 7: 2213 -
25d
Pearson AJ.Kim JB. Tetrahedron Lett. 2003, 44: 8525 - 26
Bajbak M.Kanazawa A.Anderson RJ.Greene AE. Org. Biomol. Chem. 2006, 4: 407 - For selected examples, see:
-
27a For a review on the Dötz benzannulation,
see:
Dötz KH.Tomuschat P. Chem. Soc. Rev. 1999, 28: 187 -
27b
Zhang Y.Candelaria D.Herndon JW. Tetrahedron Lett. 2005, 46: 2211 -
27c
Merlic CA.Burns EE.Xu D.Chen SY. J. Am. Chem. Soc. 1992, 114: 8722 -
27d
Merlic CA.Aldrich CC.Albaneze-Walker J.Saghatelian A.Mammen J. J. Org. Chem. 2001, 66: 1297 -
27e
Merlic CA.Xu D.Gladstone BG. J. Org. Chem. 1993, 58: 538 -
27f
Gupta A.Sen S.Harmata M.Pulley SR. J. Org. Chem. 2005, 70: 7422 -
28a
Maeyama K.Iwasawa N. J. Am. Chem. Soc. 1998, 120: 1928 -
28b
Maeyama K.Iwasawa N. J. Org. Chem. 1999, 64: 1344 -
28c
Iwasawa N.Shido M.Maeyama K.Kusama H. J. Am. Chem. Soc. 2000, 122: 10226 - 29
Landis CA.Payne MM.Eaton DL.Anthony JE. J. Am. Chem. Soc. 2004, 126: 1338 - 30
Murakami M.Kadowaki S.Fujimoto A.Ishibashi M.Matsuda T. Org. Lett. 2005, 7: 2059 - 31
Deaton KR.Gin MS. Org. Lett. 2003, 5: 2477 - For recent reviews, see:
-
32a
Muzart J. Tetrahedron 2008, 64: 5815 -
32b
Jimenez-Nunez E.Echavarren AM. Chem. Commun. 2007, 333 -
32c
Fürstner A.Davies PW. Angew. Chem. Int. Ed. 2007, 46: 3410 -
32d
Gonin DJ.Toste FD. Nature (London) 2007, 446: 395 -
32e
Hashmi AS. Chem. Rev. 2007, 107: 3180 - For selected examples, see:
-
32f
Zhang LM.Sun JW.Kozmin SA. Adv. Synth. Catal. 2006, 348: 2271 -
32g
Genin E.Leseurre L.Toullec P.-Y.Genet J.-P.Michelet V. Synlett 2007, 1780 -
32h
Kirsch SF.Binder JT.Liébert C.Menz H. Angew. Chem. Int. Ed. 2006, 45: 5878 -
32i
Buzas AK.Istrate FM.Gagosz F. Angew. Chem. Int. Ed. 2006, 45: 1 -
32j
Barluenga J.Diéguez A.Fernandez A.Rodriguez F.Fananas FJ. Angew. Chem. Int. Ed. 2006, 45: 2091 -
32k
Morita N.Krause N. Angew. Chem. Int. Ed. 2006, 45: 1897 -
32l
Marion N.Diez-Gonzalez S.de Frémont P.Noble AR.Nolan SP. Angew. Chem. Int. Ed. 2006, 45: 3647 -
32m
Liu C.Widenhoefer RA. Org. Lett. 2007, 9: 1935 -
32n
Lemière G.Gandon V.Agenet N.Goddard J.-P.de Kozak A.Aubert C.Fensterbank L.Malacria M. Angew. Chem. Int. Ed. 2007, 46: 7596 -
32o
Gonzalez-Arellano C.Abad A.Corma A.Garcia H.Iglesias M.Sanchez F. Angew. Chem. Int. Ed. 2007, 46: 1 - 33
Belmont P.Andrez JC.Allan CSM. Tetrahedron Lett. 2004, 13: 2783 - For a tutorial review, please see:
-
35a
Wang C.Xi Z. Chem. Soc. Rev. 2007, 36: 1395 -
35b
Nieto-Oberhuber C.Munoz MP.Bunuel E.Nevado C.Cardenas DJ.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 2402 -
35c
Robles-Machwin R.Adrio J.Carretero JC. J. Org. Chem. 2006, 71: 5023 -
35d
Lee SI.Kim SM.Choi MR.Kim SY.Chung YK. J. Org. Chem. 2006, 71: 9366 -
35e
Mamane V.Gress T.Krause H.Fürstner A. J. Am. Chem. Soc. 2004, 126: 8654 -
35f
See ref. 32.
- For selected examples, see:
-
36a For a review, please see:
Halbes-Letinois U.Weibel J.-M.Pale P. Chem. Soc. Rev. 2007, 759 -
36b
Menz H.Kirsch SF. Org. Lett. 2006, 8: 4795 -
36c
Porcel S.Echavarren AM. Angew. Chem. Int. Ed. 2007, 46: 2672 -
36d
Li Z.Capretto DA.Rahaman R.He C. Angew. Chem. Int. Ed. 2007, 46: 5184 -
36e
Lingaiah N.Babu NS.Reddy KM.Prasad PSS.Suryanarayama I. Chem. Commun. 2007, 278 -
36f
Yamada W.Sugawara Y.Cheng HM.Ikeno T.Yamada T. Eur. J. Org. Chem. 2007, 2604 -
36g
Oh CH.Yi HJ.Lee JH. New J. Chem. 2007, 31: 835 -
36h
Harrison TJ.Kozak JA.Corbella-Pane M.Dake GR. J. Org. Chem. 2006, 71: 4525 -
36i
Arcadi A.Alfonsi M.Marinelli F. J. Organomet. Chem. 2007, 692: 5322 -
36j
Sweis RF.Schramm MP.Kozmin SA. J. Am. Chem. Soc. 2004, 126: 7442 -
36k
Asao N.Yudha S. S.Nogami T.Yamamoto Y. Angew. Chem. Int. Ed. 2005, 44: 5526 -
36l
Driver TG.Woerpel KA. J. Am. Chem. Soc. 2004, 126: 9993 -
36m
Li Z.Capretto DA.Rahaman R.He C. Angew. Chem. Int. Ed. 2007, 46: 5184 -
36n
Cui Y.He C. J. Am. Chem. Soc. 2003, 125: 16202 -
36o
Ding Q.Wu J. Org. Lett. 2007, 9: 4959 -
36p
See ref. 38
- 38
Godet T.Vaxelaire C.Michel C.Milet A.Belmont P. Chem. Eur. J. 2007, 13: 5632 -
39a
Fétizon M.Parker KA.Su D.-S. In Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing AgentsPaquette LA.Burke SD.Danheiser RL. Wiley; New York: 1999. p.361-366 -
39b
Fétizon M.Parker KA.Su D.-S. In Handbook of Reagents for Organic Synthesis, Oxidizing and Reducing AgentsPaquette LA.Burke SD.Danheiser RL. Wiley; New York: 1999. p.368-372 -
39c
Yamamoto Y. J. Org. Chem. 2007, 72: 7817 - 40
Medina JC.Goodnow TT.Rojas MT.Atwood JL.Lynn BC.Kaifer AE.Gokel GW. J. Am. Chem. Soc. 1992, 114: 10583 - 41
Zanello P. In FerrocenesTogni A.Hayashi T. Wiley-VCH; Weinheim, Germany: 1995. p.317-430 - 42 Silver-catalysed deprotection of
silyl alcohols has already been reported. See for instance:
Orsini A.Vitérisi A.Bodlenner A.Weibel J.-M.Pale P. Tetrahedron Lett. 2005, 46: 2259
References and Notes
See ref. 18.
34To our knowledge the only related example can be found in the work of Dankwardt, where he used AuCl3 (10 mol%) in toluene at 100 ˚C (Scheme [5] ). See ref. 15.
37In ref. 15, Dankwardt reported the use of 1.1 equivalents of AgCO2CF3 in nitromethane at r.t.
43
Typical Procedure:
To a flask charged with silyl enol ether quinoline (0.1 mmol)
[44]
dissolved in anhyd 1,2-dichloro-ethane
(10 mL), was added silver catalyst (5 mol%). The reaction
mixture was stirred at 50 ˚C until the reaction was judged
complete by TLC analysis (0.5-2 h). The crude mixture was
dissolved in CH2Cl2 and washed with a sat.
aq solution of NaHCO3 (3 ×). The organic phase
was dried over Na2SO4, filtered and the solvents
were removed in vacuo. If needed, the residue was loaded on a silica
gel column and elution with the appropriate mixture of cyclohexane
and EtOAc yielded the pure cyclised products.
Selected
spectroscopic data for entry 8, Table
[³]
:
isolated as a yellow oil (97%). ¹H
NMR (300 MHz, CDCl3, 25 ˚C): δ = 9.04
(s, 1 H), 8.20 (app d, ³
J
H,H = 8.8
Hz, 1 H), 8.02 (app d, ³
J
H,H = 8.3
Hz, 1 H), 7.77 (s, 1 H), 7.77 (ddd, ³
J
H,H = 8.7, 6.7 Hz, 4
J
H,H = 1.4 Hz, 1
H), 7.51 (ddd, ³
J
H,H = 8.0,
6.6 Hz, 4
J
H,H = 0.8
Hz, 1 H), 7.43-7.45 (m, 2 H), 7.34 (t, ³
J
H,H = 7.0 Hz, 2
H), 7.26 (m, 1 H), 7.03 (d, 4
J
H,H = 1.0
Hz, 1 H), 3.69 (s, 2 H), 3.63 (s, 2 H), 2.26 (s, 3 H), 1.15 (s,
9 H), 0.37 (s, 6 H). ¹³C NMR (75 MHz,
CDCl3, 25 ˚C): δ = 151.6,
150.2, 149.2, 143.2, 139.6, 131.8, 130.5, 129.2, 128.9, 128.9, 128.4,
127.1, 126.0, 125.3, 122.3, 121.3, 111.7, 62.2, 62.2, 42.6, 26.1,
18.7, -4.1. MS (ESI+): m/z (%) = 443 (100) [M + H]
+
. HRMS (CI): m/z calcd
for C28H35N2OSi+:
443.2519; found: 443.2522.
Silyl enol ether quinolines (Table [³] ) were prepared following a published procedure. Please see ref. 33.