Synlett 2008(15): 2303-2308  
DOI: 10.1055/s-2008-1078169
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Rhodium(I)-Catalyzed Cycloisomerization Reaction of Yne-Allenamides: An Approach to Cyclic Enamides

Kay M. Brummond*, Bingli Yan
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
Fax: +1(412)6248611; e-Mail: kbrummon@pitt.edu;
Further Information

Publication History

Received 24 February 2008
Publication Date:
28 August 2008 (online)

Abstract

In this paper, we demonstrate a successful conversion of alkynyl allenamides to triene-containing heterocycles via a rhodium(I)-catalyzed cycloisomerization reaction.

    References and Notes

  • 1 For a recent review, see: Brummond KM. Loyer-Drew JA. C-C Bond Formation (Part 1) by Addition Reactions: Alder-Ene Reaction, In Comprehensive Organometallic Chemistry III   Vol. 10:  Crabtree RH. Mingos MP. Ojima I. Elsevier; Oxford: 2007.  Chap. 10.12.
  • 2a Brummond KM. Chen H. Sill P. You L. J. Am. Chem. Soc.  2002,  124:  15186 
  • 2b Brummond KM. Mitasev B. Org. Lett.  2004,  6:  2245 
  • 2c Subsequently a similar finding was reported: Shibata T. Takesue Y. Kadowaki S. Takagi K. Synlett  2003,  268 
  • For example, see:
  • 3a Brummond KM. You L. Tetrahedron  2005,  61:  6180 
  • 3b Mitasev B. Yan B. Brummond KM. Heterocycles  2006,  70:  367 ; and references cited therein
  • For an enamide cycloisomerization, see:
  • 4a Trost BM. Pedregal C. J. Am. Chem. Soc.  1992,  114:  7292 
  • 4b Arisawa M. Terada Y. Theeraladanon C. Takahashi K. Nakagawa M. Nishida A. J. Organomet. Chem.  2005,  690:  5398 
  • For preparation of cyclic enamides and natural products containing cyclic enamides, see:
  • 5a Kinderman SS. Maarseveen JHV. Schoemaker HE. Hiemstra H. Rutjes FPJT. Org. Lett.  2001,  3:  2045 
  • 5b Klapars A. Campos KR. Chen C.-Y. Volante RP. Org. Lett.  2005,  7:  1185 
  • 5c Zhang X. Zhang Y. Huang J. Hsung RP. Kurtz KCM. Oppenheimer J. Petersen ME. Sagamanova IK. Shen L. Tracey MR. J. Org. Chem.  2006,  71:  4170 
  • 5d Toumi M. Couty F. Evano G. Angew. Chem Int. Ed.  2007,  46:  572 
  • 5e Yet L. Chem. Rev.  2003,  103:  4283 ; and references cited therein
  • 6 For an example, see: Zhang W. Zhang X. Angew. Chem. Int. Ed.  2006,  45:  5515 
  • 7 O’Donnell MJ. Plot RL. J. Org. Chem.  1982,  47:  2663 
  • 8 Ni Y. Amarasinghe KKD. Ksebati B. Montgomery J. Org. Lett.  2003,  5:  3771 
  • 9a Garner P. Park JM. J. Org. Chem.  1987,  52:  2361 
  • 9b Koskinen AMP. Otsomaa LA. Tetrahedron  1997,  53:  6473 
  • 9c Roush WR. Hunt JA. J. Org. Chem.  1995,  60:  798 
  • 10a Seyferth D. Marbor RS. Hilbert P. J. Org. Chem.  1971,  36:  1379 
  • 10b Ohira S. Synth. Commun.  1989,  19:  561 
  • 11a Crisp GT. Jiang Y.-L. Pullman PJ. Savi CD. Tetrahedron  1997,  53:  17489 
  • 11b Meffre P. Gauzy L. Branquet E. Durand P. Goffic FL. Tetrahedron  1996,  52:  11215 
  • 11c Meffre P. Gauzy L. Perdigues C. Desanges-Levecque F. Branquet E. Durand P. Goffic FL. Tetrahedron Lett.  1995,  36:  877 
  • 12 Trost BM. Stiles DT. Org. Lett.  2005,  7:  2117 
  • 13 Shen L. Hsung RP. Zhang Y. Antoline JE. Zhang X. Org. Lett.  2005,  7:  3081 
  • 14 For a recent review, see: Wei L.-L. Xiong H. Hsung RP. Acc. Chem. Res.  2003,  36:  773 ; and references cited therein
  • 19 Xiong H. Hsung RP. Wei L.-L. Berry CR. Mulder JA. Stockwell B. Org. Lett.  2000,  2:  2869 
15

General Procedure for the Copper-Catalyzed Coupling Protocol to Prepare an Allenamide - Preparation of 3-(3-Methylbuta-1,2-dienyl)-4-(pent-2-ynyl)oxazolidin-2-one (1b)
A flame-dried 25 mL round-bottom flask was charged with oxazolidinone 8b (0.321 g, 2.10 mmol), copper(I) thiophene-2-carboxylate (CuTC, 0.040 g, 0.21 mmol), BaO (0.643 g, 4.20 mmol), and Cs2CO3 (1.367 g, 4.20 mmol). After flushing with nitrogen, toluene (15 mL) was added, followed by DMEDA (45 µL, 0.42 mmol), then 1-iodo-3-methylbuta-1,2-diene (500 µL, 4.20 mmol). The flask was covered with aluminum foil and heated at 50 ˚C for 20 h. The reaction was then cooled to r.t., filtered through a short pad of Celite, and concentrated in vacuo. The residue was purified by column chromatography [SiO2, eluting with 95% to hexanes-EtOAc (1:1), 5% Et3N] to afford the allenamide 1b (0.363 g, 79%) as a pale yellow oil.
¹H NMR (300 MHz, CDCl3): δ = 6.57 (sept, J = 2.6 Hz, 1 H), 4.43 (app t, J = 8.7 Hz, 1 H), 4.32 (dd, J = 8.8, 4.3 Hz, 1 H), 3.97-3.90 (m, 1 H), 2.54-2.47 (m, 2 H), 2.20-2.11 (m, 2 H), 1.83 (d, J = 2.6 Hz, 3 H), 1.80 (d, J = 2.6 Hz, 3 H), 1.12 (t, J = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 191.5, 155.5, 108.9, 93.0, 85.3, 72.8, 67.1, 53.8, 22.3, 22.0, 21.8, 14.2, 12.5. IR (neat): 1968, 1757 cm. MS: m/z (%) = 220 (10), 219 (50), 204 (31), 190 (68), 152 (88), 108 (87), 81 (100), 67 (92). HRMS (EI): m/z calcd for C13H17NO2 [M+]: 219.1259; found: 219.1259.

16

General Procedure for the Alder-ene Reaction - Preparation of (7 Z )-7-Ethylidene-7,7a-dihydro-6-(prop-1-en-2-yl)pyrrolo[1,2- c ]oxazol-3(1 H )-one (15b)
To a flame-dried test tube equipped with a magnetic stirring bar was added allenamide 14b (0.022 g, 0.12 mmol). The test tube was evacuated and charged with nitrogen (3×). Then, toluene (4.4 mL) was added followed by addition of [Rh(CO)2Cl]2 (0.002 g, 0.01 mmol). The reaction mixture was stirred at r.t. for 3.5 h and upon completion, the light yellow-brown solution was chromatographed [SiO2, hexanes-EtOAc (4:1)] to give the desired cross-conjugated triene 15b (0.016 g, 72% yield). ¹H NMR (300 MHz, CDCl3): δ = 6.67 (s, 1 H), 5.76 (qd, J = 7.2, 3.1 Hz, 1 H), 5.21-5.11 (m, 3 H), 4.84 (app t, J = 8.5 Hz, 1 H), 4.24 (app t, J = 8.7 Hz, 1 H), 1.93 (s, 3 H), 1.68 (dd, J = 7.1, 1.8 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 157.4, 140.1, 135.8, 130.3 130.0, 116.5, 115.0, 70.7, 61.6, 23.3, 16.0. IR (neat): 1772 cm. MS: m/z (%) = 191 (30), 146 (46), 132 (61), 117 (47), 91 (36), 86 (64), 84 (100). HRMS (EI): m/z calcd for C11H13NO2 [M+]: 191.0946; found: 191.0952.

17

( Z )-7,8,9,9a-Tetrahydro-7-methylene-6-vinyl-oxazolo[3,4- a ]azepin-3-(1 H )-one (17a)
Following the general procedure for the Alder-ene reaction, 17a was obtained in 12% yield. ¹H NMR (300 MHz, CDCl3): δ = 6.62 (s, 1 H), 6.32 (dd, J = 17.1, 10.6 Hz, 1 H), 5.33 (dd, J = 17.1, 1.4 Hz, 1 H), 5.24 (br s, 1 H), 5.06 (dd, J = 10.6, 1.4 Hz, 1 H), 5.06 (s, 1 H), 5.05 (s, 1 H), 4.50 (app t, J = 8.4 Hz, 1 H), 4.20-4.10 (m, 1 H), 3.94 (app t, J = 8.4 Hz, 1 H), 2.71-2.65 (m, 1 H), 2.38-2.29 (m, 1 H), 2.16-2.08 (m, 1 H), 1.88-1.77 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 156.4, 142.0, 136.5, 126.3, 123.7, 117.9, 114.4, 68.4, 56.9, 35.1, 34.1. IR (neat): 1755, 1640 cm. MS: m/z (%) = 191 (87), 176 (46), 158 (54), 157 (30), 129 (45), 105 (100), 104 (42). HRMS (EI): m/z calcd for C11H13NO2 [M+]: 191.0946; found: 191.0947.

18

General Procedure for the Pauson-Khand Reaction - Preparation of Enone 18a To a flame-dried test tube equipped with a magnetic stirring bar was added allenamide 16d (0.009 g, 0.04 mmol). The test tube was evacuated and charged with carbon monoxide (3×), then toluene (5.2 mL) was added followed by [Rh(CO)2Cl]2 (0.002 g, 0.004 mmol). The reaction mixture was heated at 85 ˚C for 1 h. Upon completion of the reaction (TLC), the mixture was cooled to r.t. and chromatographed [SiO2, hexanes-EtOAc (1:1)] to give 18a as an oil (dr, 3:1, 0.008 g, 75% yield).
Major diastereomer: ¹H NMR (300 MHz, CDCl3): δ = 6.68 (s, 1 H), 4.60 (app t, J = 8.3 Hz, 1 H), 4.19-4.09 (m, 1 H), 3.96 (dd, J = 10.0, 8.5 Hz, 1 H), 3.25 (dt, J = 18.4, 3.2 Hz, 1 H), 2.86-2.76 (m, 2 H), 2.61 (ddd, J = 17.1, 12.8, 3.5 Hz, 1 H), 2.09 (dt, J = 14.1, 4.0 Hz, 1 H), 2.00-1.86 (m, 1 H), 1.24 (d, J = 7.2 Hz, 6 H), 1.20 (d, J = 6.9 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 206.6, 159.8, 155.2, 146.5, 123.0, 117.8, 67.6, 58.6, 44.6, 29.2, 28.4, 25.7, 20.3, 20.1, 16.0. IR (neat): 1760, 1682, 1651 cm. MS: m/z (%) = 261 (62), 246 (100), 232 (16), 218 (47), 174 (6). HRMS (EI): m/z calcd for C15H19NO3 [M+]: 261.1365; found: 261.1361.

20

Diels-Alder Reaction - Preparation of Tetracyclic Compound 19 To a solution of triene 2b (0.006 g, 0.03 mmol) in toluene (0.5 mL) was added N-phenylmaleimide (0.005 g, 0.03 mmol). The reaction mixture was heated at 75 ˚C for 5 h then, after cooling to r.t. was chromatographed [SiO2, hexanes-EtOAc, (1:1)] to give the product 19 as a white solid (0.008 g, 75% yield). ¹H NMR (300 MHz, CDCl3): δ = 7.46-7.34 (m, 3 H), 7.11-7.08 (m, 2 H), 5.49 (t, J = 7.5 Hz, 1 H), 4.60 (dd, J = 9.0, 5.8 Hz, 1 H), 4.40 (t, J = 7.4 Hz, 1 H), 4.35-4.34 (m, 1 H), 4.11 (dd, J = 11.5, 7.8 Hz, 1 H), 3.95-3.84 (m, 1 H), 3.27 (ddd, J = 8.9, 7.1, 1.7 Hz, 1 H), 2.77 (dd, J = 14.5, 1.7 Hz, 1 H), 2.69 (dd, J = 12.7, 3.2 Hz, 1 H), 2.40-2.32 (m, 1 H), 2.17-2.07 (m, 2 H), 2.02 (s, 3 H), 1.87 (t, J = 12.3 Hz, 1 H), 1.00 (t, J = 7.5 Hz, 3 H). ¹³C NMR (75 MHz, CD2Cl2): δ = 178.5, 176.7, 157.4, 134.8, 132.5, 130.4, 130.2, 129.3, 128.9, 128.6, 127.1, 69.6, 57.0, 52.8, 40.1, 39.3, 32.3, 28.9, 22.6, 21.7, 14.3. IR (neat): 1746, 1706 cm. MS: m/z (%) = 393 (40), 392 (100), 377 (10), 333 (17), 219 (31), 190 (90), 91 (45). HRMS (EI): m/z calcd for C23H24N2O4 [M+]: 392.1736; found: 392.1719.