Synlett 2008(16): 2547-2551  
DOI: 10.1055/s-2008-1078053
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 3-Fluoro-2,5-Disubstituted Furans and Further Derivative Reactions to Access Fluorine-Containing 3,3′-Bifurans and Tetrasubstituted Furans

Peng Li, Zhuo Chai, Gang Zhao*, Shi-Zheng Zhu*
Key Laboratory of Organofluorine Chemistry and Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. of China
Fax: +86(21)64166128; e-Mail: zhaog@mail.sioc.ac.cn; e-Mail: zhusz@mail.sioc.ac.cn;
Further Information

Publication History

Received 29 May 2008
Publication Date:
12 September 2008 (online)

Abstract

2,5-Disubstituted 3-fluorofurans were synthesized in 42-99% yield via DBU-promoted cyclization reactions of electron-deficient gem-difluorohomopropargyl alcohols. Starting from these compounds, a series of fluorinated 3,3′-bifurans and tetrasubstituted furans were also prepared through a fluorine-directed ortho-functionalization process.

    References and Notes

  • 1a Fraga BM. Nat. Prod. Rep.  1992,  9:  21 
  • 1b Natural Products Chemistry   Vol. 1:  Nakanishi K. Goto T. Ito S. Natori S. Nozoe S. Kodansha; Tokyo: 1974. 
  • 1c Natural Products Chemistry   Vol. 2:  Nakanishi K. Goto T. Ito S. Natori S. Nozoe S. Kodansha; Tokyo: 1974. 
  • 1d Natural Products Chemistry   Vol. 3:  Nakanishi K. Goto T. Ito S. Natori S. Nozoe S. Kodansha; Tokyo: 1974. 
  • 1e Sargent M. Dean FM. In Comprehensive Heterocyclic Chemistry   Vol. 3:  Bird CW. Cheeseman GWH. Pergamon Press; Oxford: 1984.  p.599-656  
  • 1f Lipshutz BH. Chem. Rev.  1986,  86:  795 
  • 2a Paquette LA. Astles PC. J. Org. Chem.  1993,  58:  165 
  • 2b Jacobi PA. Touchette KM. Selnick HG.
    J. Org. Chem.  1992,  57:  805 
  • 2c Paquette LA. Doherty AM. Rayner CM. J. Am. Chem. Soc.  1992,  114:  3910 
  • 3a Hou XL. Cheung HY. Hon TY. Kwan PL. Lo TH. Tong SY. Wong HNC. Tetrahedron  1998,  54:  1955 
  • 3b Keay BA. Chem. Rev.  1999,  28:  209 
  • 3c Zhang LZ. Chen CW. Lee CF. Wu CC. Luh TY. Chem. Commun.  2002,  2336 
  • 3d Dudnik AS. Georgyan V. Angew. Chem. Int. Ed.  2007,  46:  5195 
  • 4 Ram RN. Kumar N. Tetrahedron Lett.  2008,  49:  799 
  • 5 Duan X.-H. Liu X.-Y. Guo L.-N. Liao M.-C. Liu W.-M. Liang Y.-M. J. Org. Chem.  2005,  70:  6980 
  • 6 Yao T. Zhang X. Larock RC. J. Am. Chem. Soc.  2004,  126:  11164 
  • 7a Kirsch P. Modern Fluoroorganic Chemistry   Wiley-VCH; Weinheim, Germany: 2004. 
  • 7b LargeRadix S. Billard T. Langlois BR. J. Fluorine Chem.  2003,  124:  147 
  • 7c Stahly GP. Bell DR. J. Org. Chem.  1989,  54:  2873 
  • 7d Thayer AM. Chem. Eng. News  2006,  5:  15 
  • 8 Arimitsu S. Hammond GB. J. Org. Chem.  2007,  72:  8559 
  • 9a Xu W. Chen Q.-Y. Org. Biomol. Chem.  2003,  1:  1151 
  • 9b Lee K. Zhou W. Kelley L.-LC. Momany C. Chu CK. Tetrahedron: Asymmetry  2002,  13:  1589 
  • 9c Moon HR. Kim HO. Jeong LS. J. Chem. Soc., Perkin Trans. 1  2002,  1800 
  • 9d Qing F.-L. Gao W.-Z. Ying J. J. Org. Chem.  2000,  65:  2003 
  • 9e Forrest AK. Ohanlon PJ. Tetrahedron Lett.  1995,  36:  2117 ; and references cited therein
  • 10 Sham H.-L. Betebenner D.-A. J. Chem. Soc., Chem. Commun.  1991,  73:  1134 
  • For a recent review, see:
  • 11a Schlosser M. Mongin F. Chem. Soc. Rev.  2007,  36:  1161 
  • For recent examples, see:
  • 11b Heiss C. Marzi E. Mongin F. Schlosser M. Eur. J. Org. Chem.  2007,  669 
  • 11c Bobbio C. Schlosser M. J. Org. Chem.  2005,  70:  3039 
  • 11d Schirok H. Figueroa-Pérez S. Thutewohl M. Paulsen H. Kroh W. Klewer D. Synlett  2007,  251 
  • For reviews on the synthesis of biaryl compounds, see:
  • 13a Bringmann G. Mortimer AJP. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed.  2005,  44:  5384 
  • 13b Hassan J. Sévignon M. Gossi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • For examples of the use of the copper(I) salt-O2 combination in this field, see:
  • 13c Li X. Hewgley JB. Mulrooney CA. Yang J. Kozlowski MC. J. Org. Chem.  2003,  68:  5500 
  • 13d Lin G.-Q. Zhong M. Tetrahedron: Asymmetry  1997,  8:  1369 
  • 13e Lipshutz BH. Kayser F. Liu Z.-P. Angew. Chem., Int. Ed. Engl.  1994,  33:  1962 
  • 13f Lipshutz BH. Siegmann K. Garcia E. Kayser F. J. Am. Chem. Soc.  1993,  115:  9276 
  • 14a Jeevanandam A. Narkunan K. Ling Y.-C. J. Org. Chem.  2001,  66:  6014 
  • 14b Hou X.-L. Cheung HY. Hon TY. Kwan PL. Lo TH. Tong SY. Wong HNC. Tetrahedron  1998,  54:  1955 
  • 14c Luo FT. Bajji AC. Jeevanandam A. J. Org. Chem.  1999,  64:  1738 
  • 17a Sniady A. Wheeler KA. Dembinski R. Org. Lett.  2005,  7:  1769 
  • 17b Sauers RR. Van Arnum SD. J. Comb. Chem.  2004,  6:  350 
  • 17c Srinivasan A. Reddy VRM. Narayanan SJ. Sridevi B. Pushpan SK. Ravikumar M. Chandrashekar TK. Angew. Chem., Int. Ed. Engl.  1997,  36:  2598 
12

Typical Procedure for the Synthesis of 2c from 1c: To a solution of 1c (337 mg, 1 mmol) in anhyd THF (3 mL) was added DBU (3 equiv, 0.45 mL), and the mixture was stirred at 60 ˚C for 8 h. Then the reaction was quenched with H2O (2 mL), and the aqueous layer was extracted with EtOAc. The organic layer was washed with brine and dried over anhyd Na2SO4. After evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel to afford 2c as a white solid (279 mg, 88%).
2c: mp 95-96 ˚C. IR: 1631, 1598, 1490, 1430, 1397, 1075, 922, 691 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.67-7.75 (m, 4 H), 7.10-7.44 (m, 5 H), 6.66 (s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 150.7 (d, ¹ J CF = 256.0 Hz), 150.5 (d, ³ J CF = 8.2 Hz), 134.9 (d, ² J CF = 20.1 Hz), 131.8, 130.0, 128.7, 128.2, 127.7 (d, ³ J CF = 5.2 Hz), 124.8 (d, 4 J CF = 5.2 Hz), 123.7, 120.6, 99.2 (d, ² J CF = 20.1 Hz). ¹9F NMR (282 MHz, CDCl3, CFCl3 as the external standard): δ = -160.4 (s). LRMS: m/z (%) = 316 (100) [M+], 318 (98.47) [M+ + 2], 319 (17.59), 209 (21.35), 207 (14.17), 189 (14.46), 159 (14.64), 133 (27.90). Anal. Calcd for C16H10BrFO (315.99): C, 60.59; H, 3.18. Found: C, 60.40; H, 3.37.

15

Typical Procedure for the Synthesis of 3b from 2b: Under an atmosphere of argon, n-butyllithium (0.63 mL, 1.0 mmol) was added dropwise to a stirred solution of 2b (136 mg, 0.5 mmol) in THF (3 mL) at -78 ˚C. Then the reaction mixture was stirred for 40 min at this temperature before CuBr (81 mg, 0.60 mmol) was added and stirred for another 40 min. Then the system was equipped with an oxygen balloon and was allowed to warm to r.t. (the reaction solution slowly turned black during this process). After 8 h, 1.0 N HCl (2 mL) was added to quench the reaction and the aqueous layer was extracted with CH2Cl2 and dried over Na2SO4. The crude product was purified by column chromatography on silica gel to afford 3b as a white solid (64 mg, 47%).
3b: mp 177-178 ˚C. IR: 3143, 1636, 1492, 1400, 919, 824, 687 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.60-7.70 (m, 8 H), 7.42-7.45 (m, 4 H), 7.26-7.36 (m, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 148.8 (d, ¹ J CF = 257.0 Hz), 147.7 (d, ³ J CF = 9.0 Hz), 135.2 (d, ² J CF = 18.6 Hz), 133.1, 129.9, 129.1, 128.8, 128.7, 127.0, 126.9, 124.9, 103.2 (d, ² J CF = 15.6 Hz). ¹9F NMR (282 MHz, CDCl3, CFCl3 as the external standard): δ = -160.8 (s). LRMS: m/z (%) = 542 (100) [M+], 543 (42.97), 544 (72.01), 545 (25.67), 546 (14.78), 383 (15.56), 338 (6.20), 320 (12.79). HRMS: m/z calcd for C32H18Cl2F2O2: 542.0652; found: 542.0661.

16

Typical Procedure for the Synthesis of 4a from 2a: Under an atmosphere of argon, n-butyllithium (0.38 mL, 0.6 mmol) was added dropwise to a stirred solution of 2a (119 mg, 0.5 mmol) in THF (3 mL) at -78 ˚C. Then the reaction mixture was stirred for 40 min at this temperature before benzal-dehyde (64 mg, 0.6 mmol) was added and the system was allowed to warm to r.t. After disappearance of the substrate benzaldehyde (monitored by TLC), the reaction was quenched with sat. NH4Cl. The aqueous layer was extracted with EtOAc and dried over Na2SO4. The crude product was purified by column chromatography on silica gel to afford 4a as a colorless oil (122 mg, 71%).
4a: IR: 3366, 3059, 1640, 1495, 1437, 1170, 1015, 839, 693 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.54-7.76 (m, 6 H), 7.30-7.44 (m, 9 H), 6.13 (d, J = 6.0 Hz, 1 H), 2.44 (d, J = 6.0 Hz, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 148.8 (d, ¹ J CF = 260.0 Hz), 147.1 (d, ³ J CF = 7.0 Hz), 135.9 (d, ² J CF = 18.7 Hz), 141.5, 130.1, 128.7, 128.5, 127.8, 127.2, 126.6, 126.1, 123.6, 123.5, 116.0 (d, ² J CF = 13.4 Hz), 67.7. ¹9F NMR (282 MHz, CDCl3, CFCl3 as the external standard): δ = -161.7 (s). LRMS: m/z (%) = 344 (100) [M+], 105 (48.91), 77 (41.89), 345 (27.06), 133 (11.84), 267 (11.09), 79 (9.95), 189 (7.16). HRMS: m/z calcd for C23H17FO2: 344.1206; found: 344.1213.