Subscribe to RSS
DOI: 10.1055/s-2008-1078025
Synthesis of a xylo-Puromycin Analogue
Publication History
Publication Date:
10 September 2008 (online)
Abstract
N 6-Bis-demethylated xylo-puromycin analogue 2 was synthesized over six steps in 56% yield from adenosine 3, involving a Mattocks bromoacetylation, a regio- and stereoselective ribo-epoxide ring opening with sodium azide and an efficient Staudinger-Vilarrasa reaction to couple the amino acid to an azide precursor.
Key words
coupling - epoxides - nucleosides - amides - malaria
- Supporting Information for this article is available online:
- Supporting Information
- 1
Porter JN.Hewitt RI.Hesseltine CW.Krupka G.Lowery JA.Wallace WS.Bohonos N.Williams JH. Antibiot. Chemother. 1952, 2: 409 -
2a
Suhadolnik RJ. Nucleoside Antibiotics Wiley-Interscience; New York: 1970. p.1-50 -
2b
Suhadolnik RJ. Nucleosides as Biological Probes Wiley; New York: 1979. p.96-102 -
3a
Yarmolinski MB.De la Haba GL. Proc. Natl. Acad. Sci. U.S.A. 1959, 45: 1721 -
3b
Allen DW.Zamecnik PC. Biochim. Biophys. Acta 1962, 55: 865 -
3c
Nathans D.Neidle A. Nature (London) 1963, 197: 1076 -
3d
Gilbert W. J. Mol. Biol. 1963, 6: 389 -
3e
Symons RH.Harris RJ.Clarke LP.Wheldrake JF.Elliott WH. Biochim. Biophys. Acta 1969, 179: 248 -
4a
Bohonos N.Williams JH. Antibiot. Chemother. 1952, 2: 409 -
4b
Hewitt RI.Wallace WS.Gumble A.White E.Williams JH. Am. J. Trop. Hyg. 1954, 3: 225 -
4c
Vince R.Lee H.Narang AS.Shirota FN. J. Med. Chem. 1981, 24: 1511 -
4d
Vara JA.Portela A.Jiménez A. Nucleic Acids Res. 1986, 14: 4617 -
4e
De La Luna S.Soria I.Pulido D.Ortin J.Jiménez A. Gene 1988, 62: 121 -
4f
Ekong RM.Kirby GC.Patel G.Phillipson JD.Warhurst DC. Biochem. Pharmacol. 1990, 40: 297 -
4g
Mielke C.Tummler J.Bode J. Trends Genet. 1995, 11: 258 -
5a
Baker BR.Joseph JP.Williams JH. J. Am. Chem. Soc. 1955, 77: 1 -
5b
Baker BR.Schaub RE.Williams JH. J. Am. Chem. Soc. 1955, 77: 7 -
5c
Baker BR.Schaub RE.Joseph JP.Williams JH. J. Am. Chem. Soc. 1955, 77: 12 -
5d
Baker BR.Schaub RE.Kissman HM. J. Am. Chem. Soc. 1955, 77: 5911 -
5e
Gerber NN.Lechevalier HA. J. Org. Chem. 1962, 27: 1731 -
5f
Guarino AJ.Kredich NM. Biochim. Biophys. Acta 1963, 68: 317 -
5g
Sowa W. Can. J. Chem. 1968, 46: 1586 -
5h
Fisher LV.Lee WW.Goodman L. J. Med. Chem. 1970, 13: 775 -
5i
Mengel R.Wiedner H. Chem. Ber. 1976, 109: 433 -
5j
Okruszek A.Verkade JG. J. Med. Chem. 1979, 22: 882 -
5k
Ozols AM.Azhayev AV.Dyatkina NB.Krayevsky AA. Synthesis 1980, 557 -
5l
Ozols AM.Azhayev AV.Krayevsky AA.Ushakov AS.Gnuchev NV.Gottikh BP. Synthesis 1980, 559 -
5m
Saneyoshi M.Nishizaka H.Katoh N. Chem. Pharm. Bull. 1981, 29: 2769 -
5n
Vince R.Lee H.Narang AS.Shirota FN. J. Med. Chem. 1981, 24: 1511 -
5o
Lee H.Fong K.-L.Vince R. J. Med. Chem. 1981, 24: 304 -
5p
Visser GM.Schattenkerk C.Van Boom JH. Recl. Trav. Chim. Pays-Bas 1984, 103: 165 -
5q
Vince R.Daluge S.Brownwell J. J. Med. Chem. 1986, 29: 2400 -
5r
Motawia MS.Meldal M.Sofan M.Stein P.Pedersen EB.Nielsen C. Synthesis 1995, 265 -
5s
McDonald FE.Gleason MM. J. Am. Chem. Soc. 1996, 118: 6648 -
5t
Botta O.Strazewski P. Nucleosides Nucleotides 1999, 18: 721 -
5u
Robins MJ.Miles RW.Samano MC.Kaspar RL. J. Org. Chem. 2001, 66: 8204 -
5v
Nguyen-Trung NQ.Botta O.Terenzi S.Strazewski P. J. Org. Chem. 2003, 68: 2038 -
5w
Gilbert CLK.Lisek CR.White RL.Gumina G. Tetrahedron 2005, 61: 8339 -
5x
Chapuis H.Strazewski P. Tetrahedron 2006, 62: 12108 -
5y
Takatsuki K.Ohgushi S.Kohmoto S.Kishikawa K.Yamamoto M. Nucleosides, Nucleotides Nucleic Acids 2006, 25: 719 -
5z
Charafeddine A.Dayoub W.Chapuis H.Strazewski P. Chem. Eur. J. 2007, 13: 5566 -
6a
De Koning-Ward TF.Waters AP.Crabb BS. Mol. Biochem. Parasit. 2001, 117: 155 -
6b
Kicska GA.Tyler PC.Evans GB.Furneaux RH. J. Biol. Chem. 2002, 277: 3219 -
6c
Kicska GA.Tyler PC.Evans GB.Furneaux RH. J. Biol. Chem. 2002, 277: 3226 -
6d
Weisman JL.Liou AP.Shelat AA.Cohen FE.Guy RK.DeRisi JL. Chem. Biol. Drug. Des. 2006, 67: 409 -
6e
Herforth C.Wiesner J.Heidler P.Sanderbrand S.Van Calenbergh S.Jomaa H.Link A. Bioorg. Med. Chem. 2004, 12: 755 -
6f
Hirsch AKH.Diederich AF. Chimia 2008, 62: 226 -
7a
Greenberg S.Moffatt JG. J. Am. Chem. Soc. 1973, 95: 4016 -
7b
Russell AF.Greenberg S.Moffatt JG. J. Am. Chem. Soc. 1973, 95: 4025 -
8a
Mattocks AR. J. Chem. Soc. 1964, 1918 -
8b
Mattocks AR. J. Chem. Soc. 1964, 4840 - 9
Samano MC.Robins MJ. Tetrahedron Lett. 1989, 30: 2329 -
10a
Froehler BC.Matteucci MD. Nucleic Acids Res. 1983, 11: 8031 -
10b
McBride LJ.Kierzek R.Beaucage SL.Caruthers MH. J. Am. Chem. Soc. 1986, 108: 2040 - 11
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley & Sons, Inc.; New York: 1999. - 12
Zhang W.Robins MJ. Tetrahedron Lett. 1992, 33: 1177
References and Notes
9-(3′-Azido-5′-
O
-
tert
-butyldiphenylsilyl-3′-deoxy-β-
d
-xylofuranos-1-yl)adenine
(6):
To a stirred solution of 5 (52 mg, 0.11
mmol) in DMF (1 mL), were added NaN3 (42 mg, 0.69 mmol)
and H2O (0.3 mL). The reaction mixture was precisely
warmed to 78-80 ˚C for 20 h, then quenched with sat.
NaHCO3 solution and diluted with EtOAc. The layers were
separated and the aqueous portion was washed with EtOAc (3 ×).
The combined organic extracts were washed with 10% aq LiCl
(3 ×) to remove the residual DMF, washed once with brine,
dried over anhyd MgSO4, filtered and concentrated in
vacuo. The resulting residue was purified by silica gel column chromatography
(EtOAc-toluene, 1:1, 3:1, 5:1, 7:1; EtOAc-toluene-MeOH,
7:1:0.5) to afford 6 as a white solid (47
mg, 80%); mp 181 ˚C (uncorrected); R
f
0.40 (EtOAc-toluene,
4:1). ¹H NMR (300 MHz, DMSO-d
6): δ = 0.99
(s, 9 H, Si-t-Bu), 3.88 (dd, 1 H, ²
J = 11.0 Hz, ³
J = 4.5 Hz, HA5′),
4.00 (dd, 1 H, ²
J = 11.0
Hz, ³
J = 3.9
Hz, HB5′), 4.46 (m, 1 H, H3′), 4.48
(m, 1 H, H4′), 4.82 (q ‘ddd’, 1 H,
³
J = 3.9, 4.5 Hz, H2′),
5.91 (d, 1 H, ³
J = 4.5
Hz, H1′), 6.36 (d, 1 H, ³
J = 5.1 Hz, OH), 7.33 (br s,
2 H, NH2), 7.36-7.46 (m, 6 H, H-m-Ar, H-p-Ar),
7.61-7.66 (m, 4 H, H-o-Ar),
8.13 (s, 1 H, H8), 8.15 (s, 1 H, H2). ¹³C
NMR (75 MHz, DMSO-d
6): δ = 18.8
(SiCMe3), 26.6 [3 × C,
SiCMe
3], 63.0 (C5′), 66.0
(C3′), 77.0 (C2′), 79.3 (C4′), 87.6 (C1′),
118.9 (C5), 127.9, 128.0 (4 × C, C-m-SiPh),
130.0 (2 × C, C-p-SiPh), 132.5,
132.8 (2 × C, C-i-SiPh), 135.0,
135.1 (4 × C, C-o-SiPh), 138.9
(C8), 149.4 (C4), 152.8 (C2), 156.0 (C6). HRMS (ESI+): m/z [M + H]+ calcd
for C26H30N8O3Si (530.65):
531.2288; found: 531.2285.
9-(3′-Azido-5′-
O
-
tert
-butyldiphenylsilyl-3′-deoxy-β-
d
-xylofuranos-1-yl)-6-
N
-(di-
n
-butylamino)methylene-adenine (7): Beforehand co-evaporated with toluene
(3 × 2 mL), the azido compound 6 (243
mg, 0.46 mmol) was dissolved in anhyd MeOH (1.2 mL). N,N-Di-n-butylformamide dimethylacetal
[5z]
(196 mg, 0.96 mmol) was added
and the reaction mixture was slightly warmed for a few seconds with
a heat gun every 15 min and stirred for 1 h. The volatiles were
removed under reduced pressure and the residue was purified by silica
gel column chromatography (EtOAc-cyclohexanes, 1:1, 2:1,
3:1, 4:1, 5:1) to yield 7 (301 mg, 98%)
as a colorless oil; R
f
0.63 (EtOAc-cyclohexanes,
5:1). ¹H NMR (300 MHz, CDCl3): δ = 0.94-0.97 [m,
6 H, N(CH2CH2CH2CH
3)2],
0.96 (s, 9 H, Si-t-Bu), 1.30-1.46 [m,
4 H, N(CH2CH2CH
2CH3)2],
1.59-1.72 [m, 4 H, N(CH2CH
2CH2CH3)2],
3.40 [t, 2 H, ³
J = 7.4
Hz, N(CH
2CH2CH2CH3)2],
3.61-3.79 [m, 2 H, N(CH
2CH2CH2CH3)2],
3.87 (dd, 1 H, ²
J = 10.8
Hz, ³
J = 4.8 Hz,
HA5′), 3.94 (dd, 1 H, ²
J = 10.8 Hz, ³
J = 5.4 Hz, HB5′), 4.37
(dd, 1 H, ³
J = 4.7,
5.1 Hz, H3′), 4.54 (pseudo q ‘ddd’, 1 H, ³
J = 4.8, 5.1, 5.4 Hz, H4′),
4.81 (pseudo t, 1 H, ³
J = 4.1, 4.7
Hz, H2′), 5.91 (d, 1 H, ³
J = 4.1 Hz, H1′), 6.46
(br s, 1 H, OH), 7.32-7.42 (m, 6 H, H-m-Ar,
H-p-Ar), 7.62-7.65 (m, 4 H,
H-o-Ar), 8.05 (s, 1 H, H8), 8.41 (s,
1 H, H2), 9.01 (s, 1 H, N=CHNBu2). ¹³C
NMR (75 MHz, CDCl3): δ = 13.6, 13.9 [2 × C,
N(CH2CH2CH2
CH3)2],
19.0 (SiCMe3), 19.7, 20.1 [2 × C,
N(CH2CH2
CH2CH3)2],
26.7 (3 × C, SiCMe
3),
29.2, 30.9 [2 × C, N(CH2
CH2CH2CH3)2],
45.3, 52.0 [2 × C, N(CH2CH2CH2CH3)2],
62.1 (C5′), 66.2 (C3′), 79.5 (C2′), 81.3
(C4′), 90.9 (C1′), 125.8 (C5), 127.7 (4 ¥ C,
C-m-SiPh), 129.8 (2 × C, C-p-SiPh), 132.7 (2 × C, C-i-SiPh), 135.5 (4 × C, C-o-SiPh), 139.5 (C8), 150.4 (C4), 152.0
(C2), 158.8 (N=CHNBu2),
159.9 (C6). HRMS (ESI+): m/z [M + H]+ calcd
for C35H47N9O3Si (669.89):
670.3644; found: 670.3649.
9-[5′-
O
-
tert
-Butyldiphenylsilyl-3′-
N
-(α-
N
-fluorenyl-methoxycarbonyl-
p
-methoxy-
l
-phenylalanyl)amido-3′-deoxy-β-
d
-xylofuranos-1-yl]-6-
N
-(di-
n
-butyl-amino)methyleneadenine (8): N-Fmoc-O-Me-l-Tyr (114 mg,
0.282 mmol) and HOBt (45 mg, 0.282 mmol) were co-evaporated from
anhyd THF (3 × 3 mL). The mixture was dissolved in anhyd
THF (2 mL) and the solution was cooled to 0 ˚C under N2 for
10 min. Then, DIC (38.3 µL, 0.242 mmol) was added and the
reaction mixture was stirred for 10 min at the same temperature.
PMe3 (1 M in THF, 303 µL, 0.303 mmol) was added
to a solution of 7 (135 mg, 0.202 mmol)
in THF (2 mL), and the mixture was stirred for 1 min at r.t. The
amino acid solution was warmed to r.t. during 1 min, and then added
to the iminophosphorane solution. The reaction mixture was stirred
at r.t. overnight, concentrated under reduced pressure and co-evaporated
from CHCl3 (2 × 3 mL), then dissolved in EtOAc
(30 mL) and quenched with sat. NaHCO3 (15 mL). The organic
layer was extracted with EtOAc (2 ×) and washed with H2O
(2 × 10 mL), dried over anhyd MgSO4, filtered
and evaporated under reduced pressure. The residue was purified
by silica gel column chromatography (EtOAc-toluene, 1:3,
1:2, 1:1, 2:1, 3:1, 4:1, EtOAc-toluene-MeOH, 3:1:0.25)
to yield 8 (175 mg, 83%). ¹H
NMR (300 MHz, CDCl3): δ = 0.92 (s,
9 H, Si-t-Bu), 0.96 [t, 6 H, ³
J = 6.9 Hz, N(CH2CH2CH2CH
3)2],
1.31-1.47 [m, 4 H, N(CH2CH2CH
2CH3)2],
1.60-1.73 [m, 4 H, N(CH2CH
2CH2CH3)2],
2.81-2.98 (m, 2 H, Hβ), 3.41 [t, 2 H, ³
J = 7.2 Hz, N(CH
2CH2CH2CH3)2],
3.61 (s, 3 H, OMe), 3.65-3.81 [m, 3 H, N(CH
2CH2CH2CH3)2,
HA5′], 3.92 (dd, 1 H, ²
J = 11.3 Hz, ³
J = 4.1 Hz, HB5′),
4.15 (pseudo t, 1 H, ³
J = 6.0,
6.9 Hz, H aliph. Fl.), 4.24-4.30 (m, 2 H, Hα,
CH
2Fl.), 4.38-4.47
(m, 3 H, H4′, H2′, CH
2Fl.),
4.71-4.77 (m, 1 H, H3′), 5.43 (d, 1 H, ³
J = 6.9 Hz, NHFmoc), 5.43 (br
s, 1 H, OH), 5.74 (d, 1 H, ³
J = 3.6
Hz, H1′), 6.63 [d, 2 H, ³
J = 8.1 Hz, H-o-Ph(OMe)],
6.99 [d, 2 H, ³
J = 8.1
Hz, H-m-Ph(OMe)], 7.20-7.30
(m, 8 H, H-m
²-Fl.,
H-m-SiPh, H-p-SiPh),
7.32-7.40 (m, 2 H, H-p
³-Fl.),
7.48-7.55 (m, 6 H, H-o
¹-Fl.,
H-o-SiPh), 7.73 (t ‘2¥d’,
2 H, ³
J = 7.2,
7.5 Hz, H-m
4-Fl.), 7.97 (s,
1 H, H8), 8.46 (s, 1 H, H2), 8.54 (d, 1 H, ³
J = 7.8 Hz, 3′-NH),
9.02 (s, 1 H, N=CHNBu2). ¹³C
NMR (75 MHz, CDCl3): δ = 13.7, 13.9 [2 ¥ C,
N(CH2CH2CH2
CH3)2], 19.0 [SiCMe3], 19.7, 20.2 [2 ¥ C,
N(CH2CH2
CH2CH3)2], 26.7
(3 ¥ C, SiCMe
3),
29.2, 30.9 [2 ¥ C, N(CH2
CH2CH2CH3)2], 38.4
(Cβ), 45.4 [N(CH2CH2CH2CH3)2],
47.1 (CH aliph. Fl.), 52.0 [N(CH2CH2CH2CH3)2],
55.0 (OMe), 56.7 (C3′), 57.2 (Cα), 62.6 (C5′),
66.9 (CH2Fl.), 80.3 (C2′),
80.3 (C4′), 91.6 (C1′), 113.8 [2 ¥ C,
C-o-Ph(OMe)], 119.9 (2 ¥ C,
C-m
4-Fl.), 125.0 (2 ¥ C,
C-o
¹-Fl.), 126.7
(C5), 127.0 (2 ¥ C, C-m
²-Fl.), 127.6
(2 ¥ C, C-p
³-Fl.),
127.7 (4 ¥ C, C-m-SiPh), 127.8 [C-p-Ph(OMe)], 129.8 (2 ¥ C,
C-p-SiPh), 130.3 [2 ¥ C,
C-m-Ph(OMe)], 132.6, 132.7 (2 ¥ C,
C-i-SiPh), 135.5 (4 ¥ C, C-o-SiPh), 141.2 (2 ¥ C, C8),
141.2 (2 ¥ C, C-o
5-Fl.),
143.7, (2 ¥ C, C-i-Fl.),
150.0 (C2), 151.9 (C4), 155.6 (N=CHNBu2),
158.4 (C6), 158.5 [C-i-Ph(OMe)],
162.3 [RC(O)OCH2Fl.],
171.4 [3′-NHC(O)R′].
HRMS (ESI+): m/z [M + H]+ calcd
for C60H70N8O7Si (1043.36):
1043.5215; found: 1043.5211.
9-[3′-Deoxy-
3′
-
N
-(
p
-methoxy-
l
-phenylalanyl)amido-β-
d
-xylofuranos-1-yl]adenine (2): Compound 9 (25
mg, 0.027 mmol) (or 8) was dissolved in
33% MeNH2-EtOH (5 mL). The reaction
mixture was stirred at r.t. overnight in a closed vessel. The solution
was concentrated under reduced pressure and co-evaporated from CHCl3 (2 × 4
mL). The oily residue was dissolved in MeOH (1 mL) and then ammonium fluoride
(5.2 mg, 0.138 mmol) was added to the solution. The reaction mixture
was warmed to 50-55 ˚C for 4 h, and monitored
by TLC. The volatiles were removed under reduced pressure. The residue
was purified by silica gel column chromatography (EtOAc-MeOH-H2O,
14:1:0.5, 12:1: 0.5, 10:1:0.5, 8:1:0.5, 6:1:0.5, 4:1:0.5) to yield
after evaporation the target compound 2 as
a fluffy white solid (12 mg, 98% from 9). ¹H
NMR (300 MHz, CD3OD): δ = 2.90 (dd,
1 H, ²
J = 13.5
Hz, ³
J = 6.3
Hz, Hβ1), 2.97 (dd, 1 H, ²
J = 13.5 Hz, ³
J = 7.5 Hz, Hβ2), 3.53
(dd, 1 H, ²
J = 12.6
Hz, ³
J = 4.2
Hz, HA5′), 3.64 (s, 3 H, OMe), 3.68-3.70
(m, 1 H, Hα), 3.75 (dd, 1 H, ²
J = 12.6 Hz, ³
J = 3.3 Hz, HB5′),
4.34 (‘ddd’, 1 H, ³
J = 3.3, 3.6, 6.9 Hz, H4′),
4.43 (t, 1 H, ³
J = 5.1
Hz, H2′), 4.60 (dd, 1 H, ³
J = 5.4, 5.7 Hz, H3′),
5.79 (d, 1 H, ³
J = 4.8 Hz,
H1′), 6.73 [d, 2 H, ³
J = 8.7 Hz, H-o-Ph(OMe)],
7.11 [d, 2 H, ³
J = 8.7
Hz, H-m-Ph(OMe)], 8.18 (s, 1
H, H8), 8.22 (s, 1 H, H2). ¹³C NMR
(125 MHz, CD3OD): δ = 40.9 (Cβ),
55.6 (OMe), 57.6 (C3′), 58.6 (Cα), 62.1 (C5′),
79.4 (C2′), 81.4 (C4′), 92.5 (C1′), 115.0 [2 ¥ C,
C-o-Ph(OMe)], 121.3 (C5), 129.8 [C-p-Ph(OMe)], 131.6 [2 ¥ C,
C-m-Ph(OMe)], 142.5 (C8), 149.4
(C4), 153.6 (C2), 157.7 (C6), 160.2 [C-i-Ph(OMe)],
175.2 [3′-NHC(O)R′]. HRMS (ESI+): m/z [M + Na]+ calcd
for C20H25N7O5: 466.1815;
found: 466.1817.
The supporting information for this article
contains protocols and experimental details for the syntheses of 4, 5, 9, and 10, as
well as the ¹H NMR, DEPT, ¹³C
NMR, ¹H-¹H COSY, ¹H-¹³C
HSQC, and (in part) ¹H-¹³C
HMBC spectra of all compounds.