Synlett 2008(13): 2046-2050  
DOI: 10.1055/s-2008-1077975
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Reaction of a Polycyclic Diketone with Lithiated Methoxyallene: Synthesis of New Functionalized Cage Compounds

Reinhold Zimmer, Maurice Taszarek, Luise Schefzig, Hans-Ulrich Reissig*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
Fax: +49(30)83855367; e-Mail: hans.reissig@chemie.fu-berlin.de;
Further Information

Publication History

Received 7 May 2008
Publication Date:
15 July 2008 (online)

Abstract

Syntheses of several new functionalized cage compounds are described. The key steps of the reaction sequence are addition of lithiated methoxyallene 2 to cage diketone 1, preparation of dehydrated intermediate 5, and its ozonolysis leading to diester 7. Alternatively, 5 could be hydrolyzed to provide cage compound 6 with a bisenone subunit. Via diol 9 chiral crown ether 11 could be prepared in low yield. A first stereoselective epoxidation of chalcone 12 with tert-butyl hydroperoxide in the presence of 11 gave the epoxide 13 in reasonable yield, but with a low level of enantioselectivity.

    References and Notes

  • Reviews:
  • 1a Zimmer R. Synthesis  1993,  165 
  • 1b Zimmer R. Khan FA. J. Prakt. Chem.  1996,  338:  92 
  • 1c Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev.  2000,  100:  3067 
  • 1d Tius MA. Acc. Chem. Res.  2003,  36:  281 
  • 1e Zimmer R. Reissig H.-U. Donor-Substituted Allenes, In Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004.  p.425 
  • 1f Tius MA. Cyclizations of Allenes, In Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004.  p.817 
  • 1g Tius MA. Eur. J. Org. Chem.  2005,  2193 
  • 1h Reissig H.-U. Zimmer R. In Science of Synthesis   Vol. 44:  Krause N. Thieme; Stuttgart: 2007.  p.301 
  • 1i Tius MA. 1-Methoxyallenyl Lithium, In Encyclopedia of Reagents for Organic Synthesis   Vol. 5:  Paquette LA. Wiley; Chichester: 1995.  p.3316 
  • 1j Zimmer R. Reissig H.-U. 1-Methoxyallenyl Lithium, In Encyclopedia of Reagents for Organic Synthesis   1st update:  Paquette LA. Wiley; Chichester: 2005. 
  • 2a Zimmer R. Reissig H.-U. Angew. Chem. Int. Ed. Engl.  1988,  27:  1518 ; Angew. Chem. 1988, 100, 1576
  • 2b Zimmer R. Reissig H.-U. Liebigs Ann. Chem.  1991,  553 
  • 2c Zimmer R. Angermann J. Hain U. Hiller F. Reissig H.-U. Synthesis  1997,  1467 
  • 2d Zimmer R. Orschel B. Scherer S. Reissig H.-U. Synthesis  2002,  1553 
  • 2e Zimmer R. Collas M. Czerwonka R. Hain U. Reissig H.-U. Synthesis  2008,  237 
  • 3a Schade W. Reissig H.-U. Synlett  1999,  632 
  • 3b Pulz R. Cicchi S. Brandi A. Reissig H.-U. Eur. J. Org. Chem.  2003,  1153 
  • 3c Helms M. Schade W. Pulz R. Watanabe T. Al-Harrasi A. Fisera L. Hlobilova I. Zahn G. Reissig H.-U. Eur. J. Org. Chem.  2005,  1003 
  • 4a Hoff S. Brandsma L. Arens JF. Recl. Trav. Chim. Pays-Bas  1969,  88:  609 
  • 4b Gange D. Magnus P. J. Am. Chem. Soc.  1978,  100:  7746 
  • 4c Gange D. Magnus P. Bass L. Arnold EV. Clardy J. J. Am. Chem. Soc.  1980,  102:  2134 
  • 4d Magnus P. Albaugh-Robertson P. J. Chem. Soc., Chem. Commun.  1984,  804 
  • 4e Hormuth S. Reissig H.-U. J. Org. Chem.  1994,  59:  67 
  • 4f Hormuth S. Schade W. Reissig H.-U. Liebigs Ann.  1996,  2001 
  • 4g Flögel O. Reissig H.-U. Eur. J. Org. Chem.  2004,  2797 
  • 4h Hölemann A. Reissig H.-U. Synthesis  2004,  1963 
  • 4i Brasholz M. Reissig H.-U. Synlett  2007,  1294 
  • 4j Brasholz M. Reissig H.-U. Angew. Chem. Int. Ed.  2007,  46:  1634 ; Angew. Chem. 2007, 119, 1659
  • 5a Breuil-Desvergnes V. Compain P. Vatèle J.-M. Goré J. Tetrahedron Lett.  1999,  40:  5009 
  • 5b Breuil-Desvergnes V. Compain P. Vatèle J.-M. Goré J. Tetrahedron Lett.  1999,  40:  8789 
  • 5c Okala Amombo M. Hausherr A. Reissig H.-U. Synlett  1999,  1871 
  • 5d Breuil-Desvergnes V. Goré J. Tetrahedron  2001,  57:  1939 
  • 5e Breuil-Desvergnes V. Goré J. Tetrahedron  2001,  57:  1951 
  • 5f Flögel O. Okala Amombo MG. Reissig H.-U. Zahn G. Brüdgam I. Hartl H. Chem. Eur. J.  2003,  9:  1405 
  • 5g Flögel O. Reissig H.-U. Synlett  2004,  895 
  • 5h Chowdhury MA. Reissig H.-U. Synlett  2006,  2383 
  • 5i Kaden S. Reissig H.-U. Org. Lett.  2006,  8:  4763 
  • 6 Kaden S. Brockmann M. Reissig H.-U. Helv. Chim. Acta  2005,  88:  1826 
  • 7a Flögel O. Dash J. Brüdgam I. Hartl H. Reissig H.-U. Chem. Eur. J.  2004,  10:  4283 
  • 7b Dash J. Lechel T. Reissig H.-U. Org. Lett.  2007,  9:  5541 
  • 7c Lechel T. Dash J. Brüdgam I. Reissig H.-U. Eur. J. Org. Chem.  2008,  3647 
  • 8a Gwiazda M. Reissig H.-U. Synlett  2006,  1683 
  • 8b Gwiazda M. Reissig H.-U. Synthesis  2008,  990 
  • 9 Kaden S. Reissig H.-U. Brüdgam I. Hartl H. Synthesis  2006,  1351 
  • 10 Sörgel S. Azap C. Reissig H.-U. Org. Lett.  2006,  8:  4875 
  • 11a Reissig H.-U. Hormuth S. Schade W. Okala Amombo M. Watanabe T. Pulz R. Hausherr A. Zimmer R. J. Heterocycl. Chem.  2000,  37:  597 
  • 11b Brasholz M. Reissig H.-U. Zimmer R. Acc. Chem. Res.  2008, in press
  • 13a Jeong I.-Y. Nagao Y. Synlett  1999,  579 
  • 13b Voigt B. Brands M. Goddard R. Wartchow R. Butenschön H. Eur. J. Org. Chem.  1998,  2719 
  • Reviews:
  • 14a Marchand AP. Synlett  1991,  73 
  • 14b Marchand AP. Aldrichimica Acta  1995,  28:  95 
  • 15 Marchand AP. Chong H.-S. Ganguly B. Tetrahedron: Asymmetry  1999,  10:  4695 
  • 16 Govender T. Hariprakasha HK. Kruger HG. Marchand AP. Tetrahedron: Asymmetry  2003,  14:  1553 
  • 17a Marchand AP. Alihod˛ić S. McKim AS. Kumar KA. Mlinarić-Majerski K. Šumanovac T. Bott SG. Tetrahedron Lett.  1998,  39:  1861 
  • 17b Marchand AP. Hazlewood A. Huang Z. Vadlakonda SK. Rocha J.-DR. Power TD. Mlinarić-Majerski K. Klaic L. Kragol G. Byran JC. Struct. Chem.  2003,  14:  279 
  • 17c Marchand AP. Gore VK. Srinivas G. Heterocycles  2003,  61:  541 
  • 17d Romański J. Marchand AP. Polish J. Chem.  2004,  78:  223 
  • 18 Cookson RC. Crundwell E. Hill RR. Hudec J. J. Chem. Soc.  1964,  3062 
  • 21 Hoff S. Brandsma L. Arens JF. Recl. Trav. Chim. Pays-Bas  1968,  87:  1179 
  • 22 Review on α,β-unsaturated carbonyl compounds: Bulman Page PC. Klair SS. Rosenthal S. Chem. Soc. Rev.  1990,  19:  147 
  • 23 The diester 7 was recently obtained by a one-pot reaction of 1 with dimethoxycarbene in moist toluene in 19% yield, see: Romański J. Mlostoń G. Heimgartner H. Helv. Chim. Acta  2007,  90:  1279 
  • 25 Hormuth S. Reissig H.-U. Dorsch D. Liebigs Ann. Chem.  1994,  121 
  • 26a For a mechanistic discussion of the ozonolysis of allenes, see: Langler RF. Raheja RK. Schank K. Beck H. Helv. Chim. Acta  2001,  84:  1943 ; and references therein
  • 26b

    The formation of diester 7 can be rationalized by single-electron transfers via intermediates A to D, whereas the formation of the methyl ketone 8 is more speculative. Therefore, a single-electron transfer to intermediate C by O2 - and conversion of the carbonyl group into an acetal moiety by the solvent methanol may lead to this side product (Scheme  [²] ).

  • For epoxidations using chiral crown ethers, see:
  • 27a Bakó P. Bakó T. Mészáros A. Keglevich G. Szőllősy A. Bodor S. Makó A. Tőke L. Synlett  2004,  643 
  • 27b Hori K. Tamura M. Tani K. Nishiwaki N. Ariga M. Tohda Y. Tetrahedron Lett.  2006,  47:  3115 ; and references cited therein
  • 28 Stock HT. Kellogg RM. J. Org. Chem.  1996,  61:  3093 
  • For chiral recognition of racemic primary amines by BINOL-containing crown ethers, see:
  • 31a Kyba EP. Koga K. Sousa LR. Siegel MG. Cram DJ. J. Am. Chem. Soc.  1973,  95:  2692 
  • 31b Cram DJ. Science  1974,  183:  803 
  • 31c Yamamoto K. Yunioka H. Okamoto Y. Chikamatsu H. J. Chem. Soc., Chem. Commun.  1987,  168 
  • 31d Galán A. Andreu D. Echavarren AM. Prados P. de Mendoza J. J. Am. Chem. Soc.  1992,  114:  1511 ; see also refs. 15 and 16
12

Watanabe, T.; Reissig, H.-U., unpublished results.

19

Bisallenyl Adduct 4 Methoxyallene (4.20 g, 60.0 mmol) was dissolved in dry THF (35 mL) and treated with n-BuLi (16.0 mL, 40.0 mmol, 2.5 M in hexanes) at -40 ˚C under argon atmosphere. After 5 min the solution of 2 was cooled to -78 ˚C and diketone 1 (0.522 g, 3.00 mmol, dissolved in 5 mL of THF) was added within 5 min. The reaction mixture was stirred for 2 h at
-78 ˚C and quenched with sat. aq NH4Cl solution (25 mL). Warmup to r.t. was followed by extraction with Et2O (3 × 30 mL) and drying (Na2SO4). Purification of the crude product by recrystallization (hexane-Et2O) provided 4 (0.678 g, 74%) as a beige-colored solid, mp 148-150 ˚C. ¹H NMR (250 MHz, CDCl3): δ = 1.03, 1.54 (AB system, J AB = 10.5 Hz, 2 H, CH2), 2.25-2.46, 2.61-2.73 (2 m, 4 H each, 8 CH), 3.43 (s, 6 H, OMe), 5.46 (s, 2 H, OH), 5.48 (s, 4 H, =CH2). ¹³C NMR (62.9 MHz, CDCl3): δ = 196.6 (s, C=C=CH2), 137.5 (s, =C=COMe), 91.8 (t, =C=CH2), 79.1 (s, C-3, C-5), 56.6 (q, OMe), 47.8, 44.8, 40.7, 33.8 (4 d, CH), 41.4 (t, CH2). IR (KBr): 3630-3150 (OH), 3020-2820 (=CH, CH), 1930 (C=C=C), 1650 (C=C) cm. MS (EI, 80 eV): m/z (%) = 314 (6) [M]+, 281 (44), 161 (46), 147 (66), 115 (70), 103 (34), 69 (65), 55 (100), 43 (38). HRMS (80 eV): m/z calcd for C19H22O4: 314.1518; found: 314.1543. Anal. Calcd for C19H22O4 (314.4): C, 72.59; H, 7.05. Found: C, 71.81; H, 6.97.

20

Compound 5
To a solution of 4 (0.205 g, 0.655 mmol) in CH2Cl2 (13 mL) mesyl chloride (0.082 g, 0.723 mmol, dissolved in 2 mL of CH2Cl2) and Et3N (0.658 g, 6.55 mmol) were added at 0 ˚C. The solution was warmed up to r.t. and stirred for additional 2.5 h. Then, sat. aq NH4Cl solution (5 mL) was added and the phases were separated. The organic phase was successively washed with H2O (3 × 5 mL) and brine (1 × 5 mL) and dried (Na2SO4). Purification of the crude product by chromatography on alumina (hexane-EtOAc, 4:1) provided 5 (0.186 g, 96%) as an orange resin. ¹H NMR (250 MHz, CDCl3): δ = 1.55, 1.92 (AB system, J AB = 10.5 Hz, 2 H, CH2), 2.43, 2.65, 2.86, 2.93 (4 br s, 2 H each, 8 CH), 3.46 (s, 6 H, OMe), 5.51 (s, 4 H, =CH2). ¹³C NMR (62.9 MHz, CDCl3): δ = 198.7 (s, C=C=CH2), 132.0 (s, =C=COMe), 91.1 (t, =C=CH2), 95.1 (s, C-3, C-5), 56.4 (q, OMe), 57.3, 47.4, 44.3, 41.0 (4 d, CH), 43.3 (t, CH2). IR (neat): 3010-2860 (CH), 1930 (C=C=C) cm. MS (EI, 80 eV): m/z (%) = 296 (100) [M]+, 281 (29) [M - CH3]+, 265 (12) [M - OMe]+, 227 (15), 145 (18), 115 (15). HRMS (80 eV): m/z calcd for C19H20O3: 296.1412; found: 296.1442.

24

Ozonolysis of Bisallenyl-Substituted Compound 5
To a solution of 5 (0.37 g, 1.25 mmol) in MeOH (30 mL) argon was bubbled for 5 min with cooling to -78 ˚C. Then, the solution was treated with ozone until the solution remained blue for 20 min, followed by oxygen for 5 min. The reaction mixture was allowed to warm to r.t. within 1 h and the solvent was evaporated in vacuo. Purification of the crude product by chromatography (alumina, hexane-EtOAc, 4:1, 1:1 to 0:1) afforded diester 7 (0.080 g, 23%) as colorless crystals and methyl ketone 8 (0.033 g, 10%) as a pale yellow oil.
Diester 7: mp 134-136 ˚C. ¹H NMR (250 MHz, CDCl3): δ = 1.66, 2.04 (AB system, J AB = 11 Hz, 2 H, CH2), 2.60-2.88, 3.00-3.15 (2 m, 4 H each, 8 CH), 3.80 (s, 6 H, CO2Me). ¹³C NMR (62.9 MHz, CDCl3): δ = 43.2 (t, CH2), 42.1, 45.2, 49.2, 58.6 (4 d, CH), 52.2 (q, OMe), 94.7 (s, C-3, C-5), 170.7 (s, CO2Me). IR (KBr): 2990-2840 (CH), 1720 (C=O) cm. MS (EI, 80 eV): m/z (%) = 276 (2) [M]+, 245 (4) [M - OMe]+, 218 (15), 217 (100) [M - CO2Me]+. HRMS (80 eV): m/z calcd for C15H16O5: 276.0998; found: 276.0978.
Methyl ketone 8: ¹H NMR (250 MHz, CDCl3): δ = 1.52, 1.89 (AB system, J AB = 11 Hz, 2 H, CH2), 2.27 (s, 3 H, Me), 2.32 (mc, 1 H, CH), 2.62-2.67, 2.71-2.76 (2 m, 2 H, 1 H, 3 CH), 2.77-2.81, 2.84-2.88, 2.94-2.99, 3.08-3.13 (4 m, 1 H each, CH), 3.27, 3.32 (2 s, 3 H each, OMe), 3.73 (s, 3 H, CO2Me). ¹³C NMR (62.9 MHz, CDCl3): δ = 28.2 (q, Me), 43.1 (t, CH2), 41.6, 42.1, 44.7, 45.6, 46.0, 49.0, 55.9, 58.9 (8 d, CH), 51.4, 51.7, 52.0 (3 q, OMe), 94.2, 98.7, 102.8 [3 s, C(OMe)2, C-3, C-5], 171.5 (s, CO2Me), 205.9 (s, COMe). MS (FAB+, 80 eV): m/z (%) = 357 (4) [M + Na]+, 335 (3) [MH]+, 304 (18), 303 (85), 291 (100) [M - MeCO]+, 154 (17), 137 (25), 136 (19), 105 (21), 81 (26), 69 (34), 55 (49), 43 (47).

29

It should be noted that the yield of 11 may be enhanced by a template-directed reaction of 9 and 10 (e.g., by the use of a Cs salt). See also ref. 15.

30

Reaction of 9 and 10
To a suspension of NaH (4 mg, 0.16 mmol) in THF (1 mL) were added a solution of 9 (18 mg, 0.08 mmol, dissolved in 5 mL of THF) and a solution of 10 (43 mg, 0.08 mmol, dissolved in 10 mL of THF) over a period of 30 min. The reaction mixture was refluxed for 84 h and after cooling to r.t. H2O (10 mL) was added, and the phases were separated. The aqueous phase was extracted with CH2Cl2 (3 × 20 mL) and the combined organic phases were dried with MgSO4. Purification of the crude product by chromatography (SiO2, hexane-EtOAc, 4:1, 1:1, then 1:3) gave product 11 (3 mg, 7%) as a pale yellow resin and starting material 10 (5 mg, 12%).
Product 11: [α]D = 6.7 (c 0.08, CHCl3). ¹H NMR (250 MHz, CDCl3): δ = 0.83, 0.87 (2 d, J = 10 Hz, 1 H each, CH2), 0.99-1.80 (m, 8 H, CH), 3.25-4.55 (m, 12 H, OCH2), 7.05-7.35 (m, 6 H, Ar), 7.40 (d, J = 8 Hz, 2 H, Ar), 7.85 (d, J = 2 Hz, 2 H, Ar), 7.97 (d, J = 2 Hz, 2 H, Ar). MS (EI, 80 eV, 240 ˚C): m/z (%) = 558 (6) [M]+, 356 (10), 327 (10), 284 (13), 269 (18), 268 (14), 239 (14), 129 (12), 123 (23), 113 (10), 111 (16), 109 (12), 105 (10), 99 (14), 97 (24), 96 (18), 91 (35), 85 (24), 83 (30), 82 (18), 74 (29), 72 (35), 55 (53), 44 (23), 43 (100) [MeCO]+, 41 (47), 26 (43). HRMS (80 eV): m/z calcd for C37H34O5: 558.24060; found: 558.24255.