Synlett 2008(13): 1993-1998  
DOI: 10.1055/s-2008-1077949
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Microwave-Assisted Cleavage of Aryl Methyl Ethers with Lithium Thioethoxide (LiSEt)

Ján Cvengroš, Stefan Neufeind, Anne Becker, Hans-Günther Schmalz*
Institut für Organische Chemie, Universität zu Köln, Greinstr. 4, 50939 Köln, Germany
Fax: +49(221)4703064; e-Mail: schmalz@uni-koeln.de;
Further Information

Publication History

Received 1 May 2008
Publication Date:
15 July 2008 (online)

Abstract

Lithium thioethoxide (LiSEt), a white solid easily prepared from EtSH and n-BuLi in hexane, was identified as a highly efficient reagent for the cleavage (O-demethylation) of aryl methyl ethers, i.e. methyl-protected phenols. Of particular synthetic value are applications in the double deprotection of 1,2-dimethoxyarenes (to give catechols) and in the selective monodeprotection of di- and trimethoxyarenes. The thermal reactions, which are usually performed in DMF as a solvent, can be greatly accelerated through microwave irradiation. In this case, the monodemethylated products are usually formed in high (80-99%) yield within only 15 minutes.

    References and Notes

  • 1a Wuts PGM. Greene TW. Greene’s Protective Groups in Organic Synthesis   4th ed.:  Wiley; Hoboken, NJ: 2006. 
  • 1b Kocienski PJ. Protecting Groups   3rd ed.:  Georg Thieme Verlag; Stuttgart: 2004. 
  • For selected examples, see:
  • 2a Wu Q. Fu D.-X. Hou A.-J. Lei G.-Q. Liu Z.-J. Chen J.-K. Zhou T.-S. Chem. Pharm. Bull.  2005,  53:  1065 
  • 2b Adams M. Pacher T. Greger H. Bauer R. J. Nat. Prod.  2005,  68:  83 
  • 2c Kanchanapoom T. Noiarsa P. Tiengtham P. Otsuka H. Ruchirawat S. Chem. Pharm. Bull.  2005,  53:  579 
  • 3a Kawasaki I. Matsuda K. Kaneko T. Bull. Chem. Soc. Jpn.  1971,  44:  1986 
  • 3b Landini D. Montanari F. Rolla F. Synthesis  1978,  771 
  • 3c Kamal A. Gayatri NL. Tetrahedron Lett.  1996,  37:  3359 
  • 3d Hwang K. Park S. Synth. Commun.  1993,  23:  2845 
  • 4a Jung ME. Lyster MA. J. Org. Chem.  1977,  42:  3761 
  • 4b Minamikawa J. Brossi A. Tetrahedron Lett.  1978,  3085 
  • 4c Olah GA. Narang SC. Tetrahedron  1982,  38:  2225 
  • 4d Groutas WC. Felker D. Synthesis  1980,  861 
  • 5 Morita T. Okamoto Y. Sakurai H. J. Chem. Soc., Chem. Commun.  1978,  874 
  • 6a McOmie JFW. West DE. Org. Synth., Coll. Vol. V   Wiley; New York: 1973.  p.412 
  • 6b Vickery EH. Pahler LF. Eisenbraun EJ. J. Org. Chem.  1979,  44:  4444 
  • 6c Demuynck M. Clercq P. Vandewalle M. J. Org. Chem.  1979,  44:  4863 
  • 6d Meier H. Dullweber U. J. Org. Chem.  1997,  62:  7667 
  • 6e Ryu I. Matsubara H. Yasuda S. Nakamura H. Curran D. J. Am. Chem. Soc.  2002,  124:  12946 
  • 7a Williard PG. Fryhle CB. Tetrahedron Lett.  1980,  21:  3731 
  • 7b Konieczny MT. Maciejewski G. Konieczny W. Synthesis  2005,  1575 
  • 8a Nagaoka H. Schmid G. Iio H. Kishi Y. Tetrahedron Lett.  1981,  22:  899 
  • 8b Gerecke M. Borer R. Brossi A. Helv. Chim. Acta  1976,  59:  2551 
  • 9a Lansinger JM. Ronald RC. Synth. Commun.  1979,  9:  341 
  • 9b Narayana C. Padmanabhan S. Kabalka GW. Tetrahedron Lett.  1990,  21:  6977 
  • 10a Grieco PA. Ferrino S. Vidari G. J. Am. Chem. Soc.  1980,  102:  7586 
  • 10b Node M. Hori H. Fujita E. J. Chem. Soc., Perkin. Trans. 1  1976,  2237 
  • 11a Parker KA. Petraitis JJ. Tetrahedron Lett.  1981,  22:  397 
  • 11b Li T.-T. Wu YL. J. Am. Chem. Soc.  1981,  103:  7007 
  • 11c Kawamura Y. Takatsuki H. Torii F. Horie T. Bull. Chem. Soc. Jpn.  1994,  67:  511 
  • 12 Horie T. Kobayashi T. Kawamura Y. Yoshida I. Tominaga H. Yamashita K. Bull. Chem. Soc. Jpn.  1995,  68:  2033 
  • 13a Fürstner A. Seidel G. J. Org. Chem.  1997,  62:  2332 
  • 13b Köster R. Seidel G. Organometallic Syntheses  1988,  4:  440 
  • 13c Bhatt MV. J. Organomet. Chem.  1978,  156:  221 
  • 14 Yamaguchi S. Nedachi M. Yokoyama H. Hirai Y. Tetrahedron Lett.  1999,  40:  7363 
  • 15a Feutrill GI. Mirrington RN. Tetrahedron Lett.  1970,  1327 
  • 15b Feutrill GI. Mirrington RN. Aust. J. Chem.  1972,  25:  1719 
  • 15c Dodge JA. Stocksdale MG. Fahey KJ. Jones CD. J. Org. Chem.  1995,  60:  739 
  • 15d Smith ABIII. Schow SR. Bloom JD. Thompson AS. Winzenberg KN. J. Am. Chem. Soc.  1982,  104:  4015 
  • 15e Myers AG. Tom NJ. Fraley ME. Cohen SB. Mader DJ. J. Am. Chem. Soc.  1997,  119:  6072 
  • 16 Huffman JW. Joyner H. Lee MD. Jordan D. Pennington WT. J. Org. Chem.  1991,  56:  2081 
  • 17 Ahmad R. Saá JM. Cava MP. J. Org. Chem.  1977,  42:  1228 
  • 18 Hansson C. Wickberg B. Synthesis  1976,  191 
  • 19 Bernard AM. Ghiani MR. Piras PP. Rivoldini A. Synthesis  1989,  287 
  • 20a Mechoulam R. Gaoni Y. J. Am. Chem. Soc.  1965,  87:  3273 
  • 20b Alonso E. Ramon DJ. Yus M. J. Org. Chem.  1997,  62:  417 
  • 20c Wilds AL. McCormack WB. J. Am. Chem. Soc.  1948,  70:  4127 
  • 21 Kirschke K. Wollf E. J. Prakt. Chem./Chem.-Ztg.  1995,  337:  405 
  • 22 Harrison IT. J. Chem. Soc., Chem. Commun.  1969,  616 
  • 23 McCarthy JR. Moore JL. Crege RJ. Tetrahedron Lett.  1978,  5183 
  • 24 Ireland RE. Walba D. Org. Synth.   Coll. Vol. VI:  Wiley; New York: 1988.  p.567 
  • 25a Newman MS. Sankaran V. Olson DR. J. Am. Chem. Soc.  1976,  98:  3237 
  • 25b Newman MS. Sankaran V. Olson DR. J. Am. Chem. Soc.  1976,  98:  3237 
  • 26 Kelly TR. Dali HM. Tsang WG. Tetrahedron Lett.  1977,  3859 
  • 27 Welch SC. Rao ASCP. Tetrahedron Lett.  1977,  505 
  • 28 Hwu JR. Tsay S.-C. J. Org. Chem.  1990,  55:  5987 
  • 29a Driver G. Johnson KE. Green Chem.  2003,  5:  163 
  • 29b Chauhan SMS. Jain N. J. Chem. Res.  2004,  693 
  • 30a Melillo DG. Larsen RD. Mathre DJ. Shukis WF. Wood AW. Collelouri JR. J. Org. Chem.  1987,  52:  5143 
  • 30b Fujii N. Irie H. Yajima H. J. Chem. Soc., Perkin Trans. 1  1977,  2288 
  • 31a Boger DL. Miyazaki S. Kim SH. Wu JH. Castle SL. Loiseleur O. Jin Q. J. Am. Chem. Soc.  1999,  121:  10004 
  • 31b Boger DL. Kim SH. Mori Y. Weng J.-H. Rogel O. Castle SL. McAtee JJ. J. Am. Chem. Soc.  2001,  123:  1862 
  • 31c Node M. Nishide K. Fuji K. Fujita E. J. Org. Chem.  1980,  45:  4275 
  • 32 Evans DA. Dinsmore CJ. Ratz AM. Evrard DA. Barrow JC. J. Am. Chem. Soc.  1997,  119:  3417 
  • 33 Inaba T. Umezawa I. Yuasa M. Inoue T. Mihashi S. Itokawa H. Ogura K. J. Org. Chem.  1987,  52:  2957 
  • 34 For a review, see: Schmalz H.-G. Gotov B. Böttcher A. In Arene Metal Complexes. Topics in Organometallic Chemistry   Vol. 7:  Kündig EP. Springer; Berlin: 2004.  p.157 
  • 35a Geller T. PhD Dissertation   TU-Berlin; Germany: 1998. 
  • 35b Majdalani A. Schmalz H.-G. Synlett  1997,  1303 
  • 35c Majdalani A. Schmalz H.-G. Tetrahedron Lett.  1997,  38:  4545 
  • 35d Geller T. Schmalz H.-G. Bats JW. Tetrahedron Lett.  1998,  39:  1537 
  • 35e Dehmel F. Schmalz H.-G. Org. Lett.  2001,  3:  3579 
  • 35f Dehmel F. Lex J. Schmalz H.-G. Org. Lett.  2002,  4:  3915 
  • 36 For an efficient entry to stilbene 5 by cross-metathesis, see: Velder J. Ritter S. Lex J. Schmalz H.-G. Synthesis  2006,  273 
  • 37a Polunin KE. Polunina IA. Schmalz H.-G. Mendeleev Commun.  2002,  12:  178 
  • 37b Polunin KE. Schmalz H.-G. Russ. J. Coord. Chem.  2004,  30:  252 
  • 38a For synthetic approaches towards pestatone, see: Cueto M. Jensen PR. Kaufmann C. Fenical W. Lobkovsky E. Clardy J. J. Nat. Prod.  2001,  64:  1444 
  • 38b Kaiser F. Schmalz H.-G. Tetrahedron  2003,  59:  7345 
  • 38c Iijima D. Tanaka D. Hamada M. Ogamino T. Ishikawa Y. Nishiyama S. Tetrahedron Lett.  2004,  45:  5469 
  • For a review on colchicine total synthesis, see:
  • 39a Graening T. Schmalz H.-G. Angew. Chem. Int. Ed.  2003,  42:  2580 ; Angew. Chem. 2003, 115, 2684
  • 39b For a recent work from this laboratory, see: Graening T. Bette V. Neudörfl J. Lex J. Schmalz H.-G. Org. Lett.  2005,  7:  4317 
  • For previous examples of selective O-demethylation reactions with thiolate-based reagents which, however, require harsh reaction conditions, long reaction times and/or the use of HMPT as a toxic additive, see:
  • 40a Moos WH. Gless RD. Rapoport H. J. Org. Chem.  1982,  47:  1831 
  • 40b Lal K. Zarate EA. Youngs WJ. Salomon RG. J. Am. Chem. Soc.  1986,  108:  1311 
  • 40c Dodge JA. Stocksdale MG. Fahey KJ. Jones CD. J. Org. Chem.  1995,  60:  739 
  • 40d Loubinoux B. Coudert G. Guillaumet G. Synthesis  1980,  638 
  • 40e Lal K. Ghosh S. Salomon RG. J. Org. Chem.  1987,  52:  1072 
  • 41a Kappe CO. Stadler A. Microwaves in Organic and Medicinal Chemistry   Wiley-VCH; Weinheim: 2005. 
  • 41b Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 41c Kappe CO. Dallinger D. Nat. Rev. Drug Discovery  2006,  5:  51 
  • For the use of microwave irradiation in the cleavage or trans protection of aryl methyl ether using different reagents, see:
  • 42a Fredriksson A. Stone-Elander S. J. Labelled Compd. Radiopharm.  2002,  45:  529 
  • 42b Marette C. Larrouquet C. Tisne’s P. Deloyeb J.-B. Grasa E. Tetrahedron Lett.  2006,  47:  6947 
43

DMF (99.8%, Fluka) was stored over molecular sieves. GC-MS measurements were carried out on an Agilent HP6890 instrument with MS detector 5937 N using an Optima 1 MS (Macherey-Nagel) 30 m × 0.25 mm capillary column with H2 as carrier gas. NMR data were measured on Bruker DPX 300 and AC 250 instruments. Chemical shifts (δ) are given in ppm relative to the solvent reference as the internal standard. Reactions under microwave irradiation were performed in a CEM Discover instrument (300 W) in glass tubes with temperature and pressure control.
Preparation of the Reagent (LiSEt): In a dry 500-mL Schlenk flask a solution of n-BuLi (1.3 M) in hexane (120 mL, 160 mmol) was diluted with hexane (150 mL) under an argon atmosphere. The solution was cooled to 0 ˚C and under rapid stirring EtSH (200 mmol, 1.25 equiv, 15 mL) was added dropwise, whereupon a white precipitate formed. The reaction mixture was stirred at 0 ˚C for 10 min and at r.t. for 30 min. After removal of the solvent (always ensuring inert conditions) the residue was dried in vacuo to give LiSEt as a white solid (10.6 g, 156 mmol, 97%). The product was stored under argon at ambient temperature. C2H5SLi; M = 68.06 g/mol. ¹H NMR (250 MHz, DMSO): δ = 1.06 (t, ³ J = 7.2 Hz, 3 H, H2), 2.27 (q, ³ J = 7.3 Hz, 2 H, H1).
General Procedure: The substrate (0.6 mmol, 1 equiv) and LiSEt (1.2 mmol, 2 equiv) were weighed into the reaction vessel (either a Schlenk tube or a microwave reactor), which was then evacuated and flushed with argon three times before DMF (5 mL) was added and the reaction mixture was heated/irradiated as specified in Table  [¹] . Reactions were monitored by TLC and/or GC-MS. For workup, the mixture was cooled to r.t. and partitioned between 2 N aq HCl (5 mL) and MTBE (5 mL). The aqueous layer was re-extracted with MTBE (3 × 10 mL). The combined organic layers were washed with brine (20 mL), dried over MgSO4, filtered through a pad of silica and solvents were evaporated. The residue was flash chromatographed on silica gel with c-hexane-EtOAc (4:1).
3-Methoxyphenol (10): colorless oil. ¹H NMR (CDCl3): δ = 3.76 (s, 3 H), 5.03 (br s, 1 H), 6.40-6.43, 6.46-6.50 (m, 3 H), 7.09-7.14 (m, 1 H). ¹³C NMR (CDCl3): δ = 55.3 (q), 101.5, 106.4, 107.9 (3 × d), 130.1 (d), 156.7 (s), 160.9 (s). HRMS (EI, 70 eV): m/z calcd for C7H8O2: 124.0524; found: 124.053.
3-Methoxy-2-methylphenol (12): white solid; mp 42-43 ˚C. ¹H NMR (CDCl3): δ = 2.11 (s, 3 H), 3.81 (s, 3 H), 4.80 (s, 1 H), 6.44 (d, ³ J = 8.5 Hz, 1 H), 6.47 (d, ³ J = 8.5 Hz, 1 H), 7.02 (ψt, ³ J = 8.5 Hz, 1 H). ¹³C NMR (CDCl3): δ = 7.9 (q), 55.6 (q), 103.0 (d), 108.0 (d), 112.1 (s), 126.4 (d), 154.3 (q), 158.6 (q). HRMS (EI, 70 eV): m/z calcd for C8H10O2: 138.0681; found: 138.068.
2-Hydroxy-6-methoxybenzonitrile (14): white solid; mp 163-164 ˚C. ¹H NMR (CD3OD): δ = 3.87 (s, 3 H), 6.50 (d, ³ J = 8.4 Hz, 1 H), 6.52 (d, ³ J = 8.4 Hz, 1 H), 7.34 (ψt, ³ J = 8.5 Hz, 1 H). ¹³C NMR (CD3OD): δ = 56.7 (q), 90.6 (s), 102.9 (d), 109.0 (d), 115.4 (s), 136.1 (d), 163.0 (s), 163.9 (s). IR (ATR): 3220 (br m), 2230 (s), 1607 (s), 1594 (s), 1476 (s) cm. HRMS (EI, 70 eV): m/z calcd for C8H7NO2: 149.0477; found: 149.047.
3,5-Dimethoxybenzoic acid (16): GC-MS and NMR data matched those of an authentic(commercial) sample.
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone (20): colorless oil. ¹H NMR (CDCl3): δ = 2.54 (s, 3 H), 3.92 (s, 6 H), 6.03 (br s, 1 H), 7.22 (s, 2 H). ¹³C NMR (CDCl3): δ = 26.2 (q), 56.4 (q), 105.7 (d), 128.8 (s), 139.7 (s), 146.7 (s), 200.3 (s). IR (ATR): 3350 (br m), 1728 (s) cm. HRMS: m/z calcd for C10H12O4: 196.0736; found: 196.074.
5-Bromo-2,3-dimethoxyphenol (22a): white solid; mp 68-70 ˚C. ¹H NMR (CDCl3): δ = 3.82 (s, 3 H), 3.85 (s, 3 H), 5.83 (br s, 1 H), 6.59 (d, 4 J = 2.1 Hz, 1 H), 6.75 (d, 4 J = 2.1 Hz, 1 H). ¹³C NMR (CDCl3): δ = 56.5 (q), 60.9 (q), 107.9 (d), 111.6 (d), 116.4 (s), 134.8 (s), 149.9 (s), 152.8 (s). MS (EI, 70 eV; isotope pattern reflected a molecule with one bromine atom): m/z (%) = 234 (95) [M]+, 232 (100) [M]+, 219 (95), 217 (97), 191 (46), 189 (55), 173 (29), 171 (31), 110 (14), 67 (41). HRMS: m/z calcd for C8H9O3 79Br: 231.9735; found: 231.974.
4-Bromo-2,6-dimethoxyphenol (22b): white solid; mp 90-92 ˚C. ¹H NMR (CDCl3): δ = 3.86 (s, 6 H), 5.42 (br s, 1 H), 6.70 (s, 2 H). ¹³C NMR (CDCl3): δ = 56.4 (q), 108.4 (d), 111.04 (s), 138.9 (s), 147.5 (s). MS (EI, 70 eV; isotope pattern reflected a molecule with one Br atom): m/z (%) = 234 (93) [M]+, 232 (100) [M]+, 219 (37), 217 (41), 191 (27), 189 (30), 176 (16), 174 (16), 110 (13), 67 (19), 50 (16). HRMS: m/z calcd for C8H9 79BrO3: 231.9735; found: 231.974.
2-Bromo-4,6-dichloro-3-methoxy-5-methylphenol (24): white solid; mp 128 ˚C. ¹H NMR (CDCl3): δ = 2.44 (s, 3 H), 3.85 (s, 3 H), 5.91 (s, 1 H). ¹³C NMR (CDCl3): δ = 18.1 (q), 60.6 (q), 103.7 (s), 117.0 (s), 121.2 (s), 134.9 (s), 148.0 (s), 152.5 (s). MS (EI, 70 eV; isotope pattern reflected a molecule with one Br and two Cl atoms): m/z (%) = 290 (6) [M]+, 288 (44) [M]+, 286 (100) [M]+, 284 (63) [M]+, 273 (14), 271 (31), 269 (20), 245 (23), 243 (56), 241 (34), 179 (15), 177 (14). HRMS: m/z calcd for C8H7O2 79Br³5Cl2: 283.9006; found: 283.901.