Am J Perinatol 2008; 25(5): 305-309
DOI: 10.1055/s-2008-1076603
© Thieme Medical Publishers

Metabolic Assessment of the Brain Using Proton Magnetic Resonance Spectroscopy in a Growth-Restricted Human Fetus: Case Report

Humberto Azpurua1 , Arturo Alvarado2 , Finita Mayobre3 , Tamara Salom4 , Joshua A. Copel1 , Freddy Guevara-Zuloaga2
  • 1Yale University School of Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, New Haven, Connecticut
  • 2Facultad de Medicina Universidad Central de Venezuela, Caracas, Venezuela
  • 3Departamento de Espectroscopía y Desarrollo de Aplicaciones, Instituto de Resonancia Magnética, Caracas, Venezuela
  • 4Unidad de Terapia Cognitiva, Av Circunvalacion, Centro profesional Santa Paula Torre B, Caracas, Venezuela
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. April 2008 (online)

ABSTRACT

Proton magnetic resonance spectroscopy (MRS) is a noninvasive method to assess concentrations of different metabolites in tissues, including the brain. We evaluated a fetus with growth restriction using Doppler ultrasound and proton MRS. Doppler assessment revealed absent end diastolic flow in the umbilical artery. Diastolic flow was increased in the middle cerebral artery. Proton MRS of the fetal brain showed lactate and a low N-acetylaspartate/choline index, metabolic markers of starvation/hypoxia. Proton MRS gave us in vivo metabolic information of the brain of a fetus under starvation/hypoxic conditions. It is potentially a new tool for fetal surveillance. To our knowledge, this is the first report of cerebral lactate detection using proton MRS in a growth-restricted human fetus with no associated malformations in the English literature. Further experimental and clinical longitudinal investigations are needed to evaluate its efficacy in the clinical setting.

REFERENCES

  • 1 Rantakallio P, Koiranen M, Mottonen J. Association of perinatal events, epilepsy, and central nervous system trauma with juvenile delinquency.  Arch Dis Child. 1992;  67(12) 1459-1461
  • 2 Stark J E, Seibert J J. Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia.  J Ultrasound Med. 1994;  13(8) 595-600
  • 3 Barkovich A J. MR of the normal neonatal brain: assessment of deep structures.  AJNR Am J Neuroradiol. 1998;  19(8) 1397-1403
  • 4 Rizzo G, Arduini D, Luciano R et al.. Prenatal cerebral Doppler ultrasonography and neonatal neurologic outcome.  J Ultrasound Med. 1989;  8(5) 237-240
  • 5 Wladimiroff J W, van Bel F. Fetal and neonatal cerebral blood flow.  Semin Perinatol. 1987;  11(4) 335-346
  • 6 Wladimiroff J W, vd Wijngaard J A, Degani S, Noordam M J, van Eyck J, Tonge H M. Cerebral and umbilical arterial blood flow velocity waveforms in normal and growth-retarded pregnancies.  Obstet Gynecol. 1987;  69(5) 705-709
  • 7 Montenegro N, Santos F, Tavares E et al.. Outcome of 88 pregnancies with absent or reversed end-diastolic blood flow (ARED flow) in the umbilical arteries.  Eur J Obstet Gynecol Reprod Biol. 1998;  79(1) 43-46
  • 8 Liston R, Crane J, Hamilton E et al.. Fetal health surveillance in labour.  J Obstet Gynaecol Can. 2002;  24(3) 250-276 , quiz 277-280
  • 9 McNamara H M, Dildy III G A. Continuous intrapartum pH, pO2, pCO2, and SpO2 monitoring.  Obstet Gynecol Clin North Am. 1999;  26(4) 671-693
  • 10 Lurie S, Weissman A, Blumberg G, Hagay Z. Fetal oximetry monitoring: a new wonder or another mirage?.  Obstet Gynecol Surv. 1996;  51(8) 498-502
  • 11 East C E, Chan F Y, Colditz P B, Begg L M. Fetal pulse oximetry for fetal assessment in labour.  Cochrane Database Syst Rev. 2007;  (2) CD004075
  • 12 Posse S, Cuenod C A, Le Bihan D. Human brain: proton diffusion MR spectroscopy.  Radiology. 1993;  188(3) 719-725
  • 13 Kok R D, van den Berg P P, van den Bergh A J, Nijland R, Heerschap A. Maturation of the human fetal brain as observed by 1H MR spectroscopy.  Magn Reson Med. 2002;  48(4) 611-616
  • 14 Kok R D, van den Berg P P, van den Bergh A J, Nijland R, Heerschap A. MR spectroscopy in the human fetus.  Radiology. 2002;  223(2) 584
  • 15 Kok R D, van den Bergh A J, Heerschap A, Nijland R, van den Berg P P. Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy.  Am J Obstet Gynecol. 2001;  185(5) 1011-1015
  • 16 Kreis R, Ernst T, Ross B D. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.  Magn Reson Med. 1993;  30(4) 424-437
  • 17 Penrice J, Cady E B, Lorek A et al.. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia.  Pediatr Res. 1996;  40(1) 6-14
  • 18 Huppi P S, Barnes P D. Magnetic resonance techniques in the evaluation of the newborn brain.  Clin Perinatol. 1997;  24(3) 693-723
  • 19 Maneru C, Junque C, Bargallo N et al.. (1)H-MR spectroscopy is sensitive to subtle effects of perinatal asphyxia.  Neurology. 2001;  57(6) 1115-1118
  • 20 Maneru C, Junque C, Botet F, Tallada M, Guardia J. Neuropsychological long-term sequelae of perinatal asphyxia.  Brain Inj. 2001;  15(12) 1029-1039
  • 21 Heerschap A, Kok R D, van den Berg P P. Antenatal proton MR spectroscopy of the human brain in vivo.  Childs Nerv Syst. 2003;  19(7-8) 418-421
  • 22 Zarifi M K, Astrakas L G, Poussaint T Y et al.. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia.  Radiology. 2002;  225(3) 859-870
  • 23 Kok R D, Steegers-Theunissen R P, Eskes T K, Heerschap A, van den Berg P P. Decreased relative brain tissue levels of inositol in fetal hydrocephalus.  Am J Obstet Gynecol. 2003;  188(4) 978-980
  • 24 Tzika A A, Vigneron D B, Ball Jr W S, Dunn R S, Kirks D R. Localized proton MR spectroscopy of the brain in children.  J Magn Reson Imaging. 1993;  3(5) 719-729
  • 25 Heerschap A, van den Berg P P. Proton magnetic resonance spectroscopy of human fetal brain.  Am J Obstet Gynecol. 1994;  170(4) 1150-1151
  • 26 Heerschap A, Sommers M G, in 't Zandt H J et al.. Nuclear magnetic resonance in laboratory animals.  Methods Enzymol. 2004;  385 41-63
  • 27 Palacin M, Lasuncion M A, Herrera E. Lactate production and absence of gluconeogenesis from placental transferred substrates in fetuses from fed and 48-H starved rats.  Pediatr Res. 1987;  22(1) 6-10
  • 28 Shambaugh III G E. Ketone body metabolism in the mother and fetus.  Fed Proc. 1985;  44(7) 2347-2351
  • 29 Eremia S C, de Boo H A, Bloomfield F H, Oliver M H, Harding J E. Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep.  Endocrinology. 2007;  148(6) 2963-2972
  • 30 Toft P B. Prenatal and perinatal striatal injury: a hypothetical cause of attention-deficit-hyperactivity disorder?.  Pediatr Neurol. 1999;  21(3) 602-610
  • 31 Fouron J-C. Does the brain-sparing effect compensate for hypoxia?. In: Arbeille D, Maulik D, Laurini RN Fetal Hypoxia?. London; The Parthenon Publishing Group 1999: 89-98
  • 32 Bada H S, Hajjar W, Chua C, Sumner D S. Noninvasive diagnosis of neonatal asphyxia and intraventricular hemorrhage by Doppler ultrasound.  J Pediatr. 1979;  95(5 Pt 1) 775-779
  • 33 Valcamonico A, Accorsi P, Battaglia S et al.. Absent or reverse end-diastolic flow in the umbilical artery: intellectual development at school age.  Eur J Obstet Gynecol Reprod Biol. 2004;  114(1) 23-28
  • 34 Wienerroither H, Steiner H, Tomaselli J, Lobendanz M, Thun-Hohenstein L. Intrauterine blood flow and long-term intellectual, neurologic, and social development.  Obstet Gynecol. 2001;  97(3) 449-453
  • 35 Bon C, Raudrant D, Poloce F et al.. Biochemical profile of fetal blood sampled by cordocentesis in 35 pregnancies complicated by growth retardation [in French].  Pathol Biol (Paris). 2007;  55(2) 111-120
  • 36 Lin C H, Gelardi N L, Cha C J, Oh W. Cerebral metabolic response to hypoglycemia in severe intrauterine growth-retarded rat pups.  Early Hum Dev. 1998;  52(1) 1-11
  • 37 Pardi G, Buscaglia M, Ferrazzi E et al.. Cord sampling for the evaluation of oxygenation and acid-base balance in growth-retarded human fetuses.  Am J Obstet Gynecol. 1987;  157(5) 1221-1228
  • 38 Wolfberg A J, Robinson J N, Mulkern R, Rybicki F, Du Plessis A J. Identification of fetal cerebral lactate using magnetic resonance spectroscopy.  Am J Obstet Gynecol. 2007;  196(1) e9-e11
  • 39 Roelants-van Rijn A M, Groenendaal F, Stoutenbeek P, van der Grond J. Lactate in the foetal brain: detection and implications.  Acta Paediatr. 2004;  93(7) 937-940
  • 40 van Cappellen A M, Heerschap A, Nijhuis J G, Oeseburg B, Jongsma H W. Hypoxia, the subsequent systemic metabolic acidosis, and their relationship with cerebral metabolite concentrations: an in vivo study in fetal lambs with proton magnetic resonance spectroscopy.  Am J Obstet Gynecol. 1999;  181(6) 1537-1545
  • 41 van Cappellen van Walsum A M, Heerschap A, Nijhuis J G, Oeseburg B, Jongsma H W. Proton magnetic resonance spectroscopy of fetal lamb brain during hypoxia.  Am J Obstet Gynecol. 1998;  179(3 Pt 1) 756-757
  • 42 Vigneron D B, Barkovich A J, Noworolski S M et al.. Three-dimensional proton MR spectroscopic imaging of premature and term neonates.  AJNR Am J Neuroradiol. 2001;  22(7) 1424-1433

Humberto AzpuruaM.D. 

Yale University School of Medicine. Department of Obstetrics, Gynecology & Reproductive Sciences

333 Cedar St., PO Box 208063, New Haven, CT 06520