Planta Med 2008; 74(7): 726-729
DOI: 10.1055/s-2008-1074534
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Anticomplementary Activity of Triterpenoids from the Whole Plant of Aceriphyllum rossii against the Classical Pathway

Byung-Sun Min1 , IkSoo Lee2 , Min-Jung Chang1 , Jae Kuk Yoo2 , MinKyun Na3 , Tran Manh Hung2 , Phuong Thien Thuong2 , JongPill Lee4 , Jung-Hee Kim5 , Jin Cheol Kim6 , Mi Hee Woo1 , Jae Sue Choi7 , Hyeong-Kyu Lee5 , KiHwan Bae2
  • 1College of Pharmacy, Catholic University of Daegu, Gyeongsan, Korea
  • 2College of Pharmacy, Chungnam National University, Daejeon, Korea
  • 3College of Pharmacy, Yeungnam University, Gyeongsan, Korea
  • 4Korea Food & Drug Administration, Seoul, Korea
  • 5Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
  • 6Korea Research Institute of Chemical Technology, Daejeon, Korea
  • 7Faculty of Food Science and Biotechnology, Pukyung National University, Busan, Korea
Further Information

Publication History

Received: August 29, 2007 Revised: March 8, 2008

Accepted: April 6, 2008

Publication Date:
16 May 2008 (online)

Abstract

To provide a better understanding of the anti-complement activity of triterpenoids, seven unusual pentacyclic triterpenoids bearing a carboxyl group at C-27 were evaluated for their anticomplement activities against the classical pathway of the complement system. The triterpenoids were isolated from the whole plant of Aceriphyllum rossii of the family Saxifragaceae and were determined to be 3α,23-isopropylidenedioxyolean-12-en-27-oic acid (1), 3-oxoolean-12-en-27-oic acid (2), 3α-hydroxyolean-12-en-27-oic acid (3), β-peltoboykinolic acid (4), 3α,23-diacetoxyolean-12-en-27-oic acid (5), 23-hydroxy-3-oxoolean-12-en-27-oic acid (6) and aceriphyllic acid A (7). Among them, compounds 2, 3, and 5 showed significant anticomplement activity on the classical pathway with IC50 values of 71.4, 98.5, and 180.7 μM, respectively, whereas compounds 1, 4, 6, and 7 were inactive. Our findings suggest that both the ketone at C-3 and the methyl at C-23 in the oleanane triterpenoids with a carboxyl group at C-27 are important for the anticomplement activity against the classical pathway.

References

  • 1 Kirschfink M. Controlling the complement system in inflammation.  Immunopharmacology. 1997;  38 51-62
  • 2 Ember J A, Hugli T E. Complement factors and their receptors.  Immunopharmacology. 1997;  38 3-15
  • 3 Lee C B. Illustrated flora of Korea. Seoul; Hyangmunsa Co 1989: 409
  • 4 Han J T, Kim H Y, Park Y D, Lee Y H, Lee K R, Kwon B M. et al . Aceriphyllic acid A, a new ACAT inhibitory triterpenoid from Aceriphyllum rossii.  Planta Med. 2002;  68 558-61
  • 5 Han J T, Bang M H, Chun O K, Kim D O, Lee C Y, Baek N I. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities.  Arch Pharm Res. 2004;  27 390-5
  • 6 Lee S M, Park J K, Lee Y H, Lee C G, Min B S, Kim J H. et al . Anti-complementary activity of triterpenoids from fruits of Zizyphus jujuba.  Biol Pharm Bull. 2004;  27 1883-6
  • 7 Thuong P T, Min B S, Jin W Y, Na M K, Lee J P, Seong R S. et al . Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis.  Biol Pharm Bull. 2006;  29 830-3
  • 8 Jung K Y, Oh S R, Park S H, Lee I S, Ahn K S, Lee J J. et al . Anti-complement activity of tiliroside from the flower buds of Magnolia fargesii.  Biol Pharm Bull. 1998;  21 1077-8
  • 9 Lee I S, Yoo J K, Na M K, Min B S, Lee J P, Yun B S. et al . Cytotoxicity of triterpenes isolated from Aceriphyllum rossii.  Chem Pharm Bull. 2007;  55 1376-8
  • 10 Min B S, Lee S Y, Kim J H, Lee J K, Kim T J, Kim D H. et al . Anti-complement activity of constituents from the stem-bark of Juglans mandshurica.  Biol Pharm Bull. 2003;  26 1042-4
  • 11 Oh S R, Kinjo J, Shii Y, Ikeda T, Nohara T, Ahn K S. et al . Effects of triterpenoids from Pueraria lobta on immunohemolysis: β-D-glucuronic acid plays an active role in anticomplementary activity in vitro.  Planta Med. 2000;  66 506-10
  • 12 Min B S, Gao J J, Hattori M, Lee H K, Kim Y H. Anticomplement activity of terpenoids from the spores of Ganoderma lucidum.  Planta Med. 2001;  67 811-4
  • 13 Oh S R, Jung K Y, Son K H, Park S H, Lee I S, Ahn K S. et al . In vitro anticomplementary activity of hederagenin saponins isolated from roots of Dipsacus asper.  Arch Pharm Res. 1999;  22 317-9
  • 14 Sun H, Zhang J, Ye Y, Pan Y, Shen Y. Cytotoxic pentacyclic triterpenoids from the rhizome of Astilbe chinensis.  Helv Chim Acta. 2003;  86 2414-23
  • 15 Izawa K, Nagai M, Inoue T. Triterpene acids and bergenin in Peltoboykinia watanabei and Boykinia lycoctonifolia.  Phytochemistry. 1973;  12 1508
  • 16 Arisawa M, Bai H, Shimizu S, Koshimura S, Tanaka M, Sasaki T. et al . Isolation and identification of a cytotoxic principle from Chrysosplenium grayanum Maxim. (Saxifragaceae) and its antitumor activities.  Chem Pharm Bull. 1992;  40 3274-6
  • 17 Chen T K, Ales D C, Baenziger N C, Wiemer D F. Anti-repellent triterpenoids from Cordia allioclova.  J Org Chem. 1983;  48 3525-531
  • 18 Dawidar A A, Reisch J, Amer M. Structure of manevalic and azizic acids, two new triterpenes from Cornulaca monacantha Del.  Chem Pharm Bull. 1979;  27 2938-42

Prof. Byung-Sun Min

College of Pharmacy

Catholic University of Daegu

Gyeongsan 712-702

Korea

Phone: +82-53-850-3613

Fax: +82-53-850-3602

Email: bsmin@cu.ac.kr