Planta Med 2008; 74(8): 802-808
DOI: 10.1055/s-2008-1074532
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

New Gastroprotective Ferruginol Derivatives with Selective Cytotoxicity against Gastric Cancer Cells

Marlene Espinoza1 , Leonardo S. Santos2 , Cristina Theoduloz1 , Guillermo Schmeda-Hirschmann3 , Jaime A. Rodríguez1
  • 1Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
  • 2Laboratorio de Síntesis Asimétrica, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
  • 3Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
Further Information

Publication History

Received: December 12, 2007 Revised: April 3, 2008

Accepted: April 7, 2008

Publication Date:
21 May 2008 (online)

Abstract

The diterpene ferruginol has shown a strong protective effect in animal gastric ulcer models. In the present work, we report the gastroprotective effect and cytotoxicity of 16 new semisynthetic ester derivatives of ferruginol. The gastroprotective effect of these compounds was assessed with the HCl/EtOH-induced gastric lesions model in mice and the cytotoxicity was measured using MRC-5 fibroblasts, gastric adenocarcinoma (AGS) and liver hepatoma Hep G2 cells. The compounds were tested for a gastroprotective effect at a single oral dose of 20 mg/kg. The best gastroprotective effect was elicited by ferruginyl nicotinate (13), reducing the lesion index by 71 %, while the derivatives ferruginyl chloroacetate (2), ferruginyl palmitate (6), ferruginyl oleate (7), ferruginyl 3,5-dinitrobenzoate (11), ferruginyl 3-methylbenzofuran-2-carbonyl ester (12), ferruginyl indoleacetate (14), ferruginyl indolebutyrate (15) and ferruginyl pthalate (16) reduced the lesions by 49 – 66 %. The most promising compounds were 11, 13 and 14, presenting a gastroprotective effect higher or similar to that of ferruginol but with a high selectivity towards the tumor AGS cells. Among the three products, the most selective towards AGS cells was 14, followed by 13, and 11 (IC50 values of 12, 22 and 29 μM, respectively). The isobutyrate 4, inactive as a gastroprotective agent, showed selective cytotoxicity against AGS and Hep G2 cells (IC50 values of 60 and 39.2 μM, respectively). The cytotoxicity of the above cited compounds towards fibroblasts was >1000 μM. Considering the aliphatic esters of ferruginol, the best gastroprotective activity was found in the C16 and C18 derivatives but tended to decrease with increasing aliphatic chain unsaturation. For short-chain esters, the gastroprotective effect could be observed when the chain contained a chlorine atom. For aromatic esters, the presence of nitro groups or a nitrogen atom in the aromatic ring enhanced the gastroprotective activity. The compounds with the best gastroprotective effect and the highest selectivity against tumor cells bear an amino group (indoleacetate and nicotinate) or nitro group (3,5-dinitrobenzoate).

Abbreviations

AGS cells: human gastric adenocarcinoma cells

DMSO: dimethyl sulphoxide

FBS: fetal bovine serum

HEP G2 cells: human liver hepatocellular carcinoma cells

MEM: minimum essential Eagle’s medium

MRC-5 cells: human lung fibroblasts

NRU:neutral red uptake

References

  • 1 WHO. The World Health Report. 2003: 154-9
  • 2 Luo J, Nordenvall C, Nyren O, Adami H O, Permert J, Ye W. The risk of pancreatic cancer in patients with gastric or duodenal ulcer disease.  Int J Cancer. 2007;  120 368-72
  • 3 Bahmanyar S, Ye W, Dickman P W, Nyren O. Long-term risk of gastric cancer by subsite in operated and unoperated patients hospitalized for peptic ulcer.  Am J Gastroenterol. 2007;  102 1185-91
  • 4 San Feliciano A, Gordaliza M, Salinero M, Del Corral J. Abietane acids: sources, biological activities, and therapeutic uses.  Planta Med. 1993;  59 485-90
  • 5 Cambie R C, Cox R E, Sidwell D. Phenolic diterpenoids of Podocarpus ferrugineus and other podocarpus.  Phytochemistry. 1984;  23 333-6
  • 6 Sharp H, Latif Z, Bartholomew B, Bright C, Jones C D, Sarker S D. et al . Totarol, totaradiol and ferruginol: three diterpenes from Thuja plicata (Cupressaceae).  Biochem Syst Ecol. 2001;  9 215-7
  • 7 Ulubelen A, Topcu G. Abietane diterpenoids from Salvia microstegia.  Phytochemistry. 1991;  30 2085-6
  • 8 Ulubelen A, Topcu G. New abietane diterpenoids from Salvia montbretti.  J Nat Prod. 1992;  55 441-4
  • 9 Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T. Diterpenes from the fruits of Vides rotundifolia.  J Nat Prod. 1999;  62 1532-7
  • 10 Dictionary of Natural Products on CD-ROM, Version 2007. Chapman and Hall/CRC
  • 11 Chang S, Chen P, Wang S, Wu H. Antimite activity of essential oils and their constituents from Taiwania cryptomerioides.  J Med Entomol. 2001;  38 455-7
  • 12 Becerra J, Flores C, Mena J, Aqueveque P, Alarcón J, Bittner M. et al . Antifungal and antibacterial activity of diterpenes isolated from wood extractables of Chilean Podocarpaceae.  Bol Soc Chil Quím. 2002;  47 151-7
  • 13 Ulubelen A, Birman H, Oksuz S, Topcu G, Kolak U, Barla A. et al . Cardioactive diterpenes from the roots of Salvia eriophora.  Planta Med. 2002;  68 818-21
  • 14 Clarkson C, Musonda C, Chibale K, Campbell W E, Smith P. Synthesis of totarol amino alcohol derivatives and their antiplasmodial activity and cytotoxicity.  Bioorg Med Chem. 2003;  11 4417-22
  • 15 Iwamoto M, Minami T, Tokuda H, Ohtsu H, Tanaka R. Potencial antitumor promoting diterpenoids from the item bark of Thuja standishii.  Planta Med. 2003;  69 69-72
  • 16 Rodríguez J A, Theoduloz C, Yánez T, Becerra J, Schmeda-Hirschmann G. Gastroprotective and ulcer healing effect of ferruginol in mice and rats: assessment of its mechanism of action using in vitro models.  Life Sci. 2006;  78 2503-9
  • 17 Areche C, Rodríguez J A, Razmilic I, Yánez T, Theoduloz C, Schmeda-Hirschmann G. Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives.  J Pharm Pharmacol. 2007;  59 289-300
  • 18 Santos L S, Pilli R A, Rawal V H. Enantioselective total synthesis of (+)-arborescidine A, (–)-arborescidine B, and (–)-arborescidine C.  J Org Chem. 2004;  69 1283-9
  • 19 Olfert E D, Cross B M, McWilliam A A. Guide to the care and use of experimental animals, Vol. 1. Ottawa; Canadian Council on Animal Care 1993: 213-4
  • 20 Rodríguez J A, Haun M. Cytotoxicity of trans-dehydrocrotonin from Croton cajucara (Euphorbiaceae) on V79 cells and hepatocytes.  Planta Med. 1999;  65 522-6
  • 21 Ying B, Kubo I. Complete 1H and 13C NMR assignments of totarol and its derivatives.  Phytochemistry. 1991;  6 1951-5
  • 22 Wada H, Kodato S, Kawamori M, Morikawa T, Nakai H, Takeda M. et al . Antiulcer activity of dehydroabietic acid derivatives.  Chem Pharm Bull. 1985;  33 1472-87
  • 23 Sepúlveda B, Astudillo L, Rodríguez J A, Yáñez T, Theoduloz C, Schmeda-Hirschmann G. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives.  Pharmacol Res. 2005;  52 429-37

Prof. Dr. Jaime A. Rodríguez

Departamento de Ciencias Básicas Biomédicas

Facultad de Ciencias de la Salud

Universidad de Talca

Casilla 747

Talca

Chile

Phone: +56-71-200-262

Fax: +56-71-200-276

Email: jrodrig@utalca.cl