References and Notes
-
1a
Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
-
1b
Ramon DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602
-
1c
Dömling A.
Chem. Rev.
2006,
106:
17
-
2a
Domino Reactions in Organic Synthesis
Tietze LF.
Brasche G.
Gericke KM.
Wiley-VCH;
Weinheim:
2006.
-
2b
Padwa A.
Bur SK.
Tetrahedron
2007,
63:
5341
-
3a
Schreiber SL.
Science
2000,
287:
1964
-
3b
Vugts DJ.
Koningstein MM.
Schmitz RF.
de Kanter FJJ.
Groen MB.
Orru RVA.
Chem. Eur. J.
2006,
12:
7178
-
3c
Nielsen TE.
Schreiber SL.
Angew. Chem. Int. Ed.
2008,
47:
48
-
Step economy:
-
4a
Wender PA.
Baryza JL.
Brenner SE.
Clarke MO.
Gamber GG.
Horan JC.
Jessop TC.
Kan C.
Pattabiraman K.
Williams TJ.
Pure Appl. Chem.
2003,
75:
143
-
4b
Wender PA.
Baryza JL.
Brenner SE.
Clarke MO.
Craske ML.
Horan JC.
Meyer T.
Curr. Drug Discovery Technol.
2004,
1:
1
-
4c
Wender PA.
Gamber GG.
Hubbard RD.
Pham SM.
Zhang L.
J. Am. Chem. Soc.
2005,
127:
2836
-
Atom-economy:
-
5a
Trost BM.
Science
1991,
254:
1471
-
5b
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
258
-
5c
Trost BM.
Acc. Chem. Res.
2002,
35:
695
- 6 For a special issue in environmental chemistry, see: Chem. Rev.
1995,
95:
3
- 7
Tanaka K.
Solvent-Free Organic Synthesis
Wiley-VCH;
Weinheim:
2003.
-
8a For a special issue in green chemistry, see: Chem. Rev.
2007,
107:
2167
-
8b
Tucker JL.
Org. Process Res. Dev.
2006,
10:
315
-
For recent reviews on the utilization of 1,3-dicarbonyl derivatives in MCR, see:
-
9a
Simon C.
Constantieux T.
Rodriguez J.
Eur. J. Org. Chem.
2004,
4957
-
9b
Liéby-Muller F.
Simon C.
Constantieux T.
Rodriguez J.
QSAR Comb. Sci.
2006,
25:
432
-
10a
Simon C.
Peyronel JF.
Rodriguez J.
Org. Lett.
2001,
3:
2145
-
10b
Simon C.
Liéby-Muller F.
Peyronel J.-F.
Constantieux T.
Rodriguez J.
Synlett
2003,
2301
-
10c
Liéby-Muller F.
Constantieux T.
Rodriguez J.
J. Am. Chem. Soc.
2005,
127:
17176
-
10d
Liéby-Muller F.
Simon C.
Imhof K.
Constantieux T.
Rodriguez J.
Synlett
2006,
1671
-
10e
Liéby-Muller F.
Constantieux T.
Rodriguez J.
Synlett
2007,
1323
-
11a
Habib-Zahmani H.
Hacini S.
Charonnet E.
Rodriguez J.
Synlett
2002,
1827
-
11b
Habib-Zahmani H.
Viala J.
Hacini S.
Rodriguez J.
Synlett
2007,
1037
-
12a
Filippini MH.
Rodriguez J.
J. Chem. Soc., Chem. Commun.
1995,
33
-
12b
Charonnet E.
Filippini MH.
Rodriguez J.
Synthesis
2001,
788
- 13 While this work was in progress, a related acid-catalyzed transformation with β-ketoesters in 1,2-dichloroethane as solvent was reported: Fujioka H.
Murai K.
Kubo O.
Ohba Y.
Kita Y.
Org. Lett.
2007,
9:
1687
- 14 For recent biological activity investigations with respect to these heterocycles, see for example: Tanaka T.
Muto T.
Maruoka H.
Imajo S.
Fukami H.
Tomimori Y.
Fukuda Y.
Nakatsuka T.
Bioorg. Med. Chem. Lett.
2007,
17:
3431
- 15
Wender PA.
Verma VA.
Paxton TJ.
Pillow TH.
Acc. Chem. Res.
2008,
41:
40
-
For recent contributions in this field, see for example:
-
21a
Iden HS.
Lubell WD.
Org. Lett.
2006,
8:
3425
-
21b
Van Brabandt W.
Vanwalleghem M.
D’hooghe M.
De Kimpe N.
J. Org. Chem.
2006,
71:
7083
-
21c
Wlodarczyk N.
Gilleron P.
Millet R.
Houssin R.
Hénichart J.-P.
Tetrahedron Lett.
2007,
48:
2583
-
21d
Maruoka H.
Muto T.
Tanaka T.
Imajo S.
Tomimori Y.
Fukuda Y.
Nakatsuka T.
Bioorg. Med. Chem. Lett.
2007,
17:
3435
16 Chemical purities were in the range from 80-95% as estimated by NMR. However, flash chromatography purification resulted in a significant lost of pure product, probably due to unrationalized degradation.
17 Stereochemistry of the products has been fully studied by 2D NMR analysis, including a detailed analysis of coupling patterns and constants.
18 A complex mixture of unidentified products was obtained, probably due to degradation of starting materials.
19
Typical Procedure for the Synthesis of Compounds 4
To a 50 mL two-necked round-bottomed flask flushed with Ar, equipped with a magnetic stirring bar and a reflux condenser, were added β-ketoamide 2 (1.28 mmol), aldehyde 3 (1.5 mmol), and diamine 1 (1.28 mmol). The mixture was stirred at 110 °C under Ar for 4 h, diluted with EtOAc (20 mL) after cooling, and filtered through a short pad of Celite. After evaporation, the crude resulting slurry was purified by flash chromatography over SiO2.
Selected Physical Data for Compounds 4a
Amber oil; R
f
= 0.7 (EtOAc). 1H NMR (300.13 MHz, CDCl3): δ = 1.10-1.40 (m, 1 H), 1.40-1.60 (m, 1 H), 2.10 (br s, 1 H), 2.30-2.40 (m, 2 H), 2.87 (dd, J = 15.0, 6.0 Hz, 1 H), 3.10 (dd, J = 15.0, 6.0 Hz, 1 H), 3.20-3.30 (m, 2 H), 3.42 (d, J = 12.0 Hz, 1 H), 3.51 (d, J = 12.0 Hz, 1 H), 6.60 (br s, 1 H), 6.95 (t, J = 9.0 Hz, 1 H), 7.10-7.30 (m, 7 H), 7.42 (d, J = 9.0 Hz, 2 H), 8.71 (br s, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 26.9, 27.4, 47.4, 51.4, 54.1, 68.7, 94.4, 119.6 (2 C), 123.0, 127.6, 127.7 (2 C), 128.5 (2 C), 128.7 (2 C), 138.8, 143.3, 166.4, 167.0. MS (EI): m/z (%) = 225 (6), 241 (43)
[M - Ph+], 242 (9), 334 (100) [M + H+], 335 (19).
20 Although it is not clear at the moment why we observed this loss of stereoselectivity, the two diastereomers were easily separable by flash chromatography.