Subscribe to RSS
DOI: 10.1055/s-2008-1072748
Hydrogen-Transfer Reductive Amination of Aldehydes Catalysed by Nickel Nanoparticles
Publication History
Publication Date:
07 May 2008 (online)
Abstract
Nickel nanoparticles have been found to catalyse the reductive amination of aldehydes by transfer hydrogenation with isopropanol at 76 °C.
Key words
reductive amination - aldehydes - imines - nickel nanoparticles - hydrogen transfer - amines
- For monographs and reviews, see:
-
1a
Comprehensive Organic Synthesis
Vol. 8:
Trost MB.Fleming I. Pergamon; Oxford: 1991. -
1b
Hudlick M. Reductions in Organic Chemistry 2nd ed.: ACS; Washington, D. C.: 1996. -
1c
Singaram B.Goralski CT. In Transition Metals for Organic Synthesis Vol. 2:Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. p.147 - For reviews, see:
-
2a
Tarasevich VA.Kozlov NG. Russ. Chem. Rev. 1999, 68: 55 -
2b
Gomez S.Peters JA.Maschmeyer T. Adv. Synth. Catal. 2002, 344: 1037 - For reviews, see:
-
3a
Baxter EW.Reitz AB. Org. React. 2002, 59: 1 -
3b
Abdel Magid AF.Mehrman SJ. Org. Process Res. Dev. 2006, 10: 971 - For reviews, see:
-
4a
Tararov VI.Kadyrov R.Riermeier TH.Dingerdissen U.Boerner A. Org. Prep. Proced. Int. 2004, 36: 99 -
4b
Tararov VI.Boerner A. Synlett 2005, 203 - 5 For a review, see:
Roszkowski P.Czarnocki Z. Mini-Rev. Org. Chem. 2007, 4: 190 - For reviews, see:
-
6a
Johnstone RAW.Wilby AH. Chem. Rev. 1985, 85: 129 -
6b
Kellogg RM. In Comprehensive Organic Synthesis Vol. 8:Trost BM.Fleming I. Pergamon; Oxford: 1991. Chap. 1.3. -
6c
Bäckvall JE. J. Organomet. Chem. 2002, 652: 105 - For reviews, see:
-
7a
Blaser H.-U.Spindler F. In Comprehensive Asymmetric Catalysis Vol. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.247 -
7b
Ohkuma T.Noyori R. In Comprehensive Asymmetric Catalysis Suppl. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 2004. p.43 - For reviews, see:
-
8a
Alonso F.Yus M. Chem. Soc. Rev. 2004, 33: 284 -
8b
Alonso F.Yus M. Pure Appl. Chem. 2008, 80: 1005 -
9a
Alonso F.Calvino JJ.Osante I.Yus M. Chem. Lett. 2005, 34: 1262 -
9b
Alonso F.Calvino JJ.Osante I.Yus M. J. Exp. Nanosci. 2006, 1: 419 -
10a
Alonso F.Riente P.Yus M. Tetrahedron 2008, 64: 1847 -
10b
Alonso F.Riente P.Yus M. Tetrahedron Lett. 2008, 49: 1939 - 11
Nah JH.Kim SY.Yoon NM. Bull. Korean Chem. Soc. 1998, 19: 269 - 12
Saxena I.Borah R.Sarma JC. J. Chem. Soc., Perkin Trans. 1 2000, 503 - 13
Botta M.De Angelis F.Gambacorta A.Labbiento L.Nicoletti R. J. Org. Chem. 1985, 50: 1916 - 14
Khul S.Schneider R.Fort Y. Organometallics 2003, 22: 4184 - 17
Zhu X.Ma Y.Su L.Song H.Chen G.Liang D.Wan Y. Synthesis 2006, 3955 - 18
Yamazaki S.Yamamoto M.Morikawa S. Heterocycles 2006, 67: 269 - 19
Cho BT.Kang SK. Tetrahedron 2005, 61: 5725 - 20
Byun E.Hong B.De Castro KA.Lim M.Rhee H.
J. Org. Chem. 2007, 72: 9815 - 21
Reddy PS.Kanjilal S.Sunitha S.Prasad BN. Tetrahedron Lett. 2007, 48: 8807 - 22
Hamana H.Iwasaki F.Nagashima H.Hattori K.Hagiwara T.Narita T. Bull. Chem. Soc. Jpn. 1992, 65: 1109 - 23
Shi M.Shen YM. Helv. Chim. Acta 2001, 84: 3357 - 24
Varma RS.Dahiya R. Tetrahedron 1998, 54: 6293 - 25
Sing S.Kaur U. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1987, 26: 199 - 26
Horrillo Martínez P.Hultzsch KC.Gil A.Branchadell V. Eur. J. Org. Chem. 2007, 3311 - 27
Moglie Y.Alonso F.Vitale C.Yus M.Radivoy G. Tetrahedron 2006, 62: 2812 - 28
Abdel-Magid AF.Carson KG.Harris BD.Maryanoff CA.Shah RD. J. Org. Chem. 1996, 61: 3849
References and Notes
General Procedure for the Hydrogen-Transfer Reductive Amination of Aldehydes Catalysed by Nickel Nanoparticles
A solution of the aldehyde (5 mmol) and the amine (5 mmol) was prepared in i-PrOH (10 mL) and stirred for about 1 h. Meanwhile, NiCl2 (130 mg, 1 mmol) was added over a suspension of lithium (14 mg, 2 mmol) and DTBB (13 mg, 0.05 mmol) in THF (2 mL) at r.t. under argon. The reaction mixture, which was initially dark blue, changed to black indicating that nickel(0) was formed. After 10 min, the initially prepared solution of the aldehyde and amine was added to the nickel suspension. The reaction mixture was warmed up to 76 °C and monitored by GLC-MS. The resulting suspension was filtered through a pad containing Celite and the filtrate was dried over MgSO4. The residue obtained after removal of the solvent (15 Torr), when necessary, was purified by column chromatography (SiO2, hexane-EtOAc) to give the pure secondary amine.
N-Benzylaniline, N-benzyl-2-phenylethanamine, dibenzylamine, and N-benzyl-1-phenylethanamine were characterized by comparison of their physical and spectroscopic analyses with those of commercially available samples (Aldrich). N-Benzyl-4-methylaniline,
[17]
N-benzyl-2-methylaniline,
[17]
N-benzyl-3,5-dimethoxyaniline,
[18]
N-benzyloctan-1-amine,
[19]
N-(4-methylbenzyl)aniline,
[20]
N-(4-methylbenzyl)octan-1-amine,
[21]
N-(4-methylbenzyl)-2-phenylethanamine,
[22]
N-benzyl-4-methylbenzylamine,
[23]
N-(4-methoxybenzyl)aniline,
[24]
N-(4-methoxybenzyl)-4-methylaniline,
[25]
N-(4-methoxybenzyl)octan-1-amine,
[21]
N-(4-methoxybenzyl)-2-phenylethanamine,
[26]
N-[(furan-2-yl)methyl]octan-1-amine, N-(n-decyl)aniline,
[27]
and N-(cyclohexylmethyl)aniline
[28]
were characterised by comparison of their physical and spectroscopic data with those described in the literature.
Spectroscopic Data of New Compounds
N
-(4-Methylbenzyl)-2-methylpropan-1-amine
Yellow oil; R
f
= 0.18 (hexane-EtOAc, 1:1). IR (neat): 3345 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.91 (d, J = 6.7, 6 H, 2 × CH
3CH), 1.69 (br s, 1 H, NH), 1.76-1.85 (m, 1 H, CHCH3), 2.34 (s, 3 H, CH3C), 2.42 (d, J = 7.0, 2 H, CH
2CH), 3.71 (s, 2 H, CH2C), 7.15, 7.19 (AB system, J = 8.2, 4 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 20.2, 20.8 (3 × CH3), 27.5 (CHCH3), 53.1, 56.6 (2 × CH2), 128.0, 129.0 (4 × ArCH), 136.0, 137.0 (2 × ArC). MS (70 eV): m/z = 177 [M+], 134, 106, 105, 77. HRMS: m/z [M+] calcd for C12H19N: 177.1517; found: 177.1516.
N
-[(Furan-2-yl)methyl]octan-1-amine
Yellow oil; R
f
= 0.24 (hexane-EtOAc, 1:1). IR (neat): 3325 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.86 (t, J = 6.2, 3 H, CH3), 1.26 [br s, 10 H, (CH
2)5CH3], 1.48 (m, 2 H, CH
2CH2N), 1.98 (br s, 1 H, NH), 2.59 (t, J = 6.9, 2 H, CH2CH
2N), 3.77 (s, 2 H, CH2C), 6.16, 6.30, 7.35 (3 s, 3 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 14.0 (CH3), 22.6, 27.3, 29.2, 29.4, 29.9, 31.7, 46.2, 49.1 (8 × CH2), 106.7, 110.0, 142.0 (3 × ArCH), 154.0 (ArC). MS (70 eV):
m/z = 209 [M+], 110, 81. HRMS: m/z [M+] calcd for C13H23NO: 209.1779; found: 209.1777.
In principle, deactivation of the catalyst cannot be attributed to particle agglomeration as confirmed by transmission electron microscopy (TEM) analysis of a sample of the reused suspension. Further studies to understand the properties, reactivity, and deactivation mechanism of the catalyst are under way.