Synthesis 2008(18): 2841-2867  
DOI: 10.1055/s-2008-1067241
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Chiral Bispidines

Matthias Breuning*, Melanie Steiner
Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Fax: +49(931)8884755; e-Mail: breuning@chemie.uni-wuerzburg.de;
Weitere Informationen

Publikationsverlauf

Received 12 March 2008
Publikationsdatum:
04. September 2008 (online)

Abstract

Chiral bispidines are characterized by a modified 3,7-diazabicyclo[3.3.1]nonane framework. Their structural diversity is broad, reaching from simple bicyclic derivatives with chiral substituents at the nitrogen atoms to sophisticated tetracyclic ones like (-)-sparteine. This review focuses on the stereoselective preparation of chiral bispidines and on their applications in selected asymmetric transformations, thus showing the tremendous progress achieved in both areas over the last 15 years.

1 Introduction

2 Synthesis of Chiral Bispidines

2.1 Classification

2.2 Simple Bispidines with Chiral Substituents at the Nitrogen Atoms

2.3 Chiral Bicyclic Bispidines

2.4 Chiral Tricyclic Bispidines

2.5 Chiral Tetracyclic Bispidines

3 Bispidines in Enantioselective Deprotonation Reactions

3.1 N-Boc-Pyrrolidine

3.1.1 Mechanism

3.1.2 Evaluation of Chiral Diamines

3.2 N-Boc-N-PMP-Benzylamine

3.3 Comparison of (-)-Sparteine with Tricyclic Bispidines

4 Bispidine Transition-Metal Complexes in Asymmetric Synthesis

4.1 Oxidative Kinetic Resolutions

4.2 Enantioselective Additions of Diethylzinc

4.3 Other Applications

5 Concluding Remarks

    References

  • 1a Mannich C. Mohs P. Ber. Dtsch. Chem. Ges.  1930,  63:  608 
  • 1b For the endo,endo-alignment of the phenyl groups in 2, see: Siener T. Holzgrabe U. Droshin S. Brandt W. J. Chem. Soc., Perkin Trans. 2  1999,  1827 
  • 2a Partheil A. Arch. Pharm. (Weinheim)  1894,  232:  161 
  • 2b Ing HR. J. Chem. Soc.  1932,  2778 
  • 3 Marrière E. Rouden J. Tadino V. Lasne M.-C. Org. Lett.  2000,  2:  1121 
  • 4 Dixon AJ. McGrath MJ. O’Brien P. Org. Synth.  2006,  83:  141 
  • (-)-Sparteine(5), also known as lupinidine, was first isolated in 1851:
  • 5a Stenhouse J. Ann. Chem. Pharm.  1851,  78:  1 
  • 5b Mills EJ. Ann. Chem. Pharm.  1863,  125:  71 
  • Its structure was elucidated in 1933:
  • 5c Clemo GR. Raper R. J. Chem. Soc.  1933,  644 
  • 7 The commonly used methods for the preparation of achiral bispidines are reviewed in: Jeyaraman R. Avila S. Chem. Rev.  1981,  81:  149 
  • For earlier investigations on the (-)-sparteine-mediated kinetic resolution of O-allyl carbamates, see:
  • 10a Hoppe D. Zschage O. Angew. Chem., Int. Ed. Engl.  1989,  28:  69 
  • 10b Zschage O. Schwark J.-R. Hoppe D. Angew. Chem., Int. Ed. Engl.  1990,  29:  296 
  • 11 Hoppe D. Hintze F. Tebben P. Angew. Chem., Int. Ed. Engl.  1990,  29:  1422 
  • 12 Stymiest JL. Dutheuil G. Mahmood A. Aggarwal VK. Angew. Chem. Int. Ed.  2007,  46:  7491 
  • For a related three-step protocol, see:
  • 13a Beckmann E. Desai V. Hoppe D. Synlett  2004,  2275 
  • 13b

    Ref. 28.

  • 14 Kerrick ST. Beak P. J. Am. Chem. Soc.  1991,  113:  9708 
  • 15 Beak P. Kerrick ST. Wu S. Chu J. J. Am. Chem. Soc.  1994,  116:  3231 
  • 16 For a review about the configurational stability of enantio­-enriched organolithium compounds, see: Basu A. Thayumanavan S. Angew. Chem. Int. Ed.  2002,  41:  716 
  • 18a Seppi M. Kalkofen R. Reupohl J. Fröhlich R. Hoppe D. Angew. Chem. Int. Ed.  2004,  43:  1423 
  • See also:
  • 18b Reuber J. Fröhlich R. Hoppe D. Org. Lett.  2004,  6:  783 
  • 18c Reuber J. Fröhlich R. Hoppe D. Eur. J. Org. Chem.  2005,  3017 
  • 18d Chedid RB. Fröhlich R. Hoppe D. Org. Lett.  2006,  8:  3061 
  • 18e Chedid RB. Fröhlich R. Wibbeling B. Hoppe D. Eur. J. Org. Chem.  2007,  3179 
  • 19 Hodgson DM. Lee GP. Chem. Commun.  1996,  1015 
  • 20 Hodgson DM. Lee GP. Marriott RE. Thompson AJ. Wisedale R. Witherington J. J. Chem. Soc., Perkin Trans. 1  1998,  2151 
  • 21 Johansson MJ. Schwartz LO. Amedjkouh M. Kann NC. Eur. J. Org. Chem.  2004,  1894 
  • 22 Johansson MJ. Schwartz L. Amedjkouh M. Kann N. Tetrahedron: Asymmetry  2004,  15:  3531 
  • 23 Metallinos C. Szillat H. Taylor NJ. Snieckus V. Adv. Synth. Catal.  2003,  345:  370 
  • 24 Thayumanavan S. Basu A. Beak P. J. Am. Chem. Soc.  1997,  119:  8209 
  • For reviews about the dynamic kinetic and dynamic thermodynamic resolution of configurationally labile organolithium compounds, see:
  • 25a Beak P. Anderson DR. Curtis MD. Laumer JM. Pippel DJ. Weisenburger GA. Acc. Chem. Res.  2000,  33:  715 
  • 25b

    Ref. 113.

  • 26 Yields and enantioselectivities are normally drastically lowered with substoichiometric amounts of 5. Notable exceptions are the α-lithiation rearrangement of the meso-epoxide 15 ²0 and the deprotonations of some ferrocenes and phosphine-boranes, see: Genet C. Canipa SJ. O’Brien P. Taylor S. J. Am. Chem. Soc.  2006,  128:  9336 
  • 27 McGrath MJ. O’Brien P. J. Am. Chem. Soc.  2005,  127:  16378 
  • 28 McGrath MJ. O’Brien P. Synthesis  2006,  2233 
  • 29 McGrath MJ. Bilke JL. O’Brien P. Chem. Commun.  2006,  2607 
  • 30 Klein S. Marek I. Poisson J.-F. Normant J.-F. J. Am. Chem. Soc.  1995,  117:  8853 
  • 31 Norsikian S. Marek I. Klein S. Poisson JF. Normant JF. Chem. Eur. J.  1999,  5:  2055 
  • 32 Denmark SE. Nakajima N. Nicaise OJ.-C. J. Am. Chem. Soc.  1994,  116:  8797 
  • 33 For the conformational behaviour and the coordination chemistry of bispidines, see: Comba P. Kerscher M. Schiek W. Prog. Inorg. Chem.  2007,  55:  613 
  • 34 Shintani R. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  1057 
  • 35 Sorger K, Petersen H, and Stohrer J. inventors; US Patent  6924386. 
  • For earlier (-)-sparteine-mediated Reformatsky reactions, see:
  • 36a Review: Guetté M. Capillon J. Guetté J.-P. Tetrahedron  1973,  29:  3659 
  • 36b Guetté M. Guetté J.-P. Capillon J. Tetrahedron Lett.  1971,  30:  2863 
  • 36c Hansen MM. Bartlett PA. Heathcock CH. Organometallics  1987,  6:  2069 
  • 37 Ferreira EM. Stoltz BM. J. Am. Chem. Soc.  2001,  123:  7725 
  • 38 Maheswaran H. Prasanth KL. Krishna GG. Ravikumar K. Sridhar B. Kantam ML. Chem. Commun.  2006,  4066 
  • 39a Lee Y.-M. Kwon M.-A. Kang SK. Jeong JH. Choi S.-N. Inorg. Chem. Commun.  2003,  6:  197 
  • 39b Lopez S. Muravyov I. Pulley SR. Keller SW. Acta Crystallogr., Sect. C  1998,  54:  355 
  • 40 Zhang Y. Yeung S.-M. Wu H. Heller DP. Wu C. Wulff WD. Org. Lett.  2003,  5:  1813 
  • Reviews:
  • 42a Hoppe D. Hintze F. Tebben P. Paetow M. Ahrens H. Schwerdtfeger J. Sommerfeld P. Haller J. Guarnieri W. Kolczewksi S. Hense T. Hoppe I. Pure Appl. Chem.  1994,  66:  1479 
  • 42b Hoppe D. Hense T. Angew. Chem., Int. Ed. Engl.  1997,  36:  2282 
  • 42c Clayden J. Organolithiums: Selectivity for Synthesis   Pergamon; New York: 2002. 
  • 42d Hodgson DM. Topics in Organometallic Chemistry   Vol. 5:  Springer; Berlin: 2003. 
  • 42e Gawley RE. Coldham I. In The Chemistry of Organolithium Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2004.  p.997 
  • 42f Hoppe D. Christoph G. In The Chemistry of Organolithium Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2004.  p.1055 
  • 42g Chuzel O. Riant O. In Topics in Organometallic Chemistry   Vol. 15:  Lemaire M. Mangeney P. Springer; Berlin: 2005.  p.59 
  • 43 (+)-Sparteine (ent-5), also known as pachycarpine, was first isolated in 1933 from Sophora pachycarpa C. A. Mey: Orechoff A. Rabinowitch M. Konowalowa R. Ber. Dtsch. Chem. Ges.  1933,  66:  621 
  • 44 Hermet J.-PR. Porter DW. Dearden MJ. Harrison JR. Koplin T. O’Brien P. Parmene J. Tyurin V. Whitwood AC. Gilday J. Smith NM. Org. Biomol. Chem.  2003,  1:  3977 
  • 45 For a recent review about the stereoselective preparation of tricyclic bispidines of type 8 and 131 and their applications in asymmetric synthesis, see: O’Brien P. Chem. Commun.  2008,  655 
  • 46 Chemodanova SV. Potekhin KA. Palyulin VA. Shishkina IN. Dem’yanovich VM. Struchkov YT. Samoshin VV. Zefirov NS. Dokl. Akad. Nauk  1992,  326:  847 ; Chem. Abstr. 1993, 118, 169089
  • 47 Zefirov NS. Zyk NV. Vatsadze SZ. Tyurin VS. Bull. Russ. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)  1992,  41:  2131 ; Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 2687
  • 48 Danieli B. Lesma G. Passarella D. Piacenti P. Sacchett i A. Silvani A. Virdis A. Tetrahedron Lett.  2002,  43:  7155 
  • 49 For an earlier review about the synthesis of chiral bispidines, see: Lesma G. Sacchetti A. Silvani A. Danieli B. In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles   Vicario JL. Badía D. Carrillo L. Research Signpost; Kerala: 2005.  p.33 
  • 50 Review: Stead D. O’Brien P. Tetrahedron  2007,  63:  1885 
  • 52 For a previous synthesis of 41a, see: Smissman EE. Ruenitz PC. J. Org. Chem.  1976,  41:  1593 
  • 53 Spieler J. Huttenloch O. Waldmann H. Eur. J. Org. Chem.  2000,  391 
  • 54 Lesma G. Danieli B. Passarella D. Sacchetti A. Silvani A. Tetrahedron: Asymmetry  2003,  14:  2453 
  • 55 Huttenloch O. Laxman E. Waldmann H. Chem. Commun.  2002,  673 
  • 56 Huttenloch O. Laxman E. Waldmann H. Chem. Eur. J.  2002,  8:  4767 
  • 57 Huttenloch O. Spieler J. Waldmann H. Chem. Eur. J.  2000,  6:  671 
  • 58 Lesma G. Danieli B. Passarella D. Sacchetti A. Silvani A. Lett. Org. Chem.  2006,  3:  430 
  • 60 Gallagher DJ. Wu S. Nikolic NA. Beak P. J. Org. Chem.  1995,  60:  8148 
  • 61 Lesma G. Cattenati C. Pilati T. Sacchetti A. Silvani A. Tetrahedron: Asymmetry  2007,  18:  659 
  • 62 Kuehne ME. Matson PA. Bornmann WG. J. Org. Chem.  1991,  56:  513 
  • 63 Gogoll A. Johansson C. Axén A. Grennberg H. Chem. Eur. J.  2001,  7:  396 
  • 64 Phuan P.-W. Ianni JC. Kozlowski MC. J. Am. Chem. Soc.  2004,  126:  15473 
  • 65 Breuning M. Hein D. Tetrahedron: Asymmetry  2007,  18:  1410 
  • 66a Davies SG. Walters IAS. J. Chem. Soc., Perkin Trans. 1  1994,  1129 
  • 66b Davies SG. Garrido NM. Kruchinin D. Ichihara O. Kotchie LJ. Price PD. Mortimer AJP. Russell AJ. Smith AD. Tetrahedron: Asymmetry  2006,  17:  1793 
  • 66c Monfray J. Gelas-Mialhe Y. Gramain J.-C. Remuson R. Tetrahedron Lett.  2003,  44:  5785 
  • 67 Ciganek E. J. Org. Chem.  1995,  60:  4635 
  • 68 Chau FHV. Corey EJ. Tetrahedron Lett.  2006,  47:  2581 
  • 69 Danieli B. Lesma G. Passarella D. Silvani A. Viviani N. Tetrahedron  1999,  55:  11871 
  • 70 For endo-selective alkylations of bispidine imides, see: Blakemore PR. Kilner C. Norcross NR. Astles PC. Org. Lett.  2005,  7:  4721 
  • 71 Danieli B. Lesma G. Passarella D. Silvani A. J. Org. Chem.  1998,  63:  3492 
  • Some steps of the synthesis of meso-96 are not described. The overall yield was calculated assuming that the missing steps occurred quantitatively. For the preparation of meso-96 from pyridine-3,5-dicarboxylic acid or dimethyl phthalate, see:
  • 72a Stetter H. Hennig H. Chem. Ber.  1955,  88:  789 
  • 72b

    Ref. 71.

  • 72c Danieli B. Lesma G. Passarella D. Silvani A. Synth. Commun.  1997,  27:  69 
  • 73 Breuning M. Steiner M. Synthesis  2007,  1702 
  • 74 Harrison JR. O’Brien P. Porter DW. Smith NM. Chem. Commun.  2001,  1202 
  • 75 Harrison JR. O’Brien P. Porter DW. Smith NM. J. Chem. Soc., Perkin Trans. 1  1999,  3623 
  • 76 Monsees A. Laschat S. Kotila S. Fox T. Würthwein E.-U. Liebigs Ann. Chem.  1997,  533 
  • 77 Scheiber P. Nemes P. Liebigs Ann. Chem.  1994,  1033 
  • For some bicyclic bispidines prepared from (-)-cytisine (4) by cleavage of the pyridone ring, see:
  • 78a Ivachtchenko AV. Tkachenko SE. Sandulenko YB. Vvedensky VY. Khvat AV. J. Comb. Chem.  2004,  6:  828 
  • 78b Ivachtchenko AV. Khvat A. Tkachenko SE. Sandulenko YB. Vvedensky VY. Tetrahedron Lett.  2004,  45:  6733 
  • 79 Dearden MJ. Firkin CR. Hermet J.-PR. O’Brien P. J. Am. Chem. Soc.  2002,  124:  11870 
  • 80 Dearden MJ. McGrath MJ. O’Brien P. J. Org. Chem.  2004,  69:  5789 
  • 81 Genet C. McGrath MJ. O’Brien P. Org. Biomol. Chem.  2006,  4:  1376 
  • 82 Wilkinson JA. Rossington SB. Ducki S. Leonard J. Hussain N. Tetrahedron  2006,  62:  1833 
  • 83 Danieli B. Lesma G. Passarella D. Sacchetti A. Silvani A. Tetrahedron Lett.  2005,  46:  7121 
  • 84 Danieli B. Lesma G. Passarella D. Sacchetti A. Silvani A. Virdis A. Org. Lett.  2004,  6:  493 
  • 85 Hermet J.-PR. Viterisi A. Wright JM. McGrath MJ. O’Brien P. Whitwood AC. Gilday J. Org. Biomol. Chem.  2007,  5:  3614 
  • 86 For an alternative route to the methyl ester derivative of 142, see: Breuning M. Steiner M. Synthesis  2006,  1386 
  • 87 (-)-α-Isosparteine (148), also known as genisteine, is a natural product, too, and was first isolated in 1951 from Lupinus caudatus: Marion L. Turcotte F. Quellet J. Can. J. Chem.  1951,  29:  22 
  • For syntheses of racemic sparteine (rac-5), see:
  • 89a Leonard NJ. Beyler RE. J. Am. Chem. Soc.  1948,  70:  2298 
  • 89b Clemo GR. Raper R. Short WS. J. Chem. Soc.  1949,  663 
  • 89c Leonard NJ. Beyler RE. J. Am. Chem. Soc.  1950,  72:  1316 
  • 89d Anet ELFJ. Hughes GK. Ritchie E. Aust. J. Sci. Res., A  1950,  3:  635 
  • 89e Anet E. Hughes GK. Ritchie E. Nature  1950,  165:  35 
  • 89f Van Tamelen EE. Foltz RL. J. Am. Chem. Soc.  1960,  82:  2400 
  • 89g Van Tamelen EE. Foltz RL. J. Am. Chem. Soc.  1969,  91:  7372 
  • 89h Bohlmann F. Müller H.-J. Schumann D. Chem. Ber.  1973,  106:  3026 
  • 89i Takatsu N. Noguchi M. Ohmiya S. Otomasu H. Chem. Pharm. Bull.  1987,  35:  4990 
  • 89j Wanner MJ. Koomen G.-J. J. Org. Chem.  1996,  61:  5581 
  • 89k Butler T. Fleming I. Gonsior S. Kim B.-H. Sung A.-Y. Woo H.-G. Org. Biomol. Chem.  2005,  3:  1557 
  • 89l Sorm F. Keil B. Collect. Czech. Chem. Commun.  1948,  13:  544 
  • 89m Carmack M. Douglas B. Martin EW. Suss H. J. Am. Chem. Soc.  1955,  77:  4435 
  • For syntheses of racemic α-isosparteine (rac-148), see:
  • 90a

    Refs. 89c,l,m.

  • 90b Tsuda K. Sato Y. Chem. Pharm. Bull.  1954,  2:  190 
  • 90c Oinuma H. Dan S. Kakisawa H. J. Chem. Soc., Chem. Commun.  1983,  654 
  • 90d Oinuma H. Dan S. Kakisawa H. J. Chem. Soc., Perkin Trans. 1  1990,  2593 
  • For syntheses of racemic β-isosparteine, see:
  • 91a

    Refs. 89j,m and 90b.

  • 91b Blakemore PR. Norcross NR. Warriner SL. Astles PC. Heterocycles  2006,  70:  609 
  • 92 Bellet P. Ann. Pharm. Fr.  1950,  8:  551 
  • 93a Clemo GR. Raper R. Tenniswood CRS. J. Chem. Soc.  1931,  429 
  • 93b Ebner T. Eichelbaum M. Fischer P. Meese CO. Arch. Pharm. (Weinheim)  1989,  322:  399 
  • See also:
  • 93c Golebiewski WM. Spenser ID. Can. J. Chem.  1985,  63:  716 
  • 93d Bohlmann F. Zeisberg R. Chem. Ber.  1975,  108:  1043 
  • 95 Galinovsky F. Knoth P. Fischer W. Monatsh. Chem.  1955,  86:  1014 
  • 96 Okamoto Y. Suzuki K. Kitayama T. Yuki H. Kageyama H. Miki K. Tanaka N. Kasai N. J. Am. Chem. Soc.  1982,  104:  4618 
  • 97 Smith BT. Wendt JA. Aubé J. Org. Lett.  2002,  4:  2577 
  • 98a Uozumi Y. Lee S.-Y. Hayashi T. Tetrahedron Lett.  1992,  33:  7185 
  • 98b Hayashi T. Acta Chem. Scand.  1996,  50:  259 
  • 98c Weissfloch A. Azerad R. Bioorg. Med. Chem.  1994,  2:  493 
  • 99 Hermet J.-PR. McGrath MJ. O’Brien P. Porter DW. Gilday J. Chem. Commun.  2004,  1830 
  • 102 O’Brien P. Wiberg KB. Bailey WF. Hermet J.-PR. McGrath MJ. J. Am. Chem. Soc.  2004,  126:  15480 
  • 103 Li X. Schenkel LB. Kozlowski MC. Org. Lett.  2000,  2:  875 
  • 104a Batsanov AS. Grosjean C. Schuetz T. Whiting A. J. Org. Chem.  2007,  72:  6276 
  • 104b Campos KR. Klapars A. Waldman JH. Dormer PG. Chen C. J. Am. Chem. Soc.  2006,  128:  3538 
  • 104c Dieter RK. Oba G. Chandupatla KR. Topping CM. Lu K. Watson RT. J. Org. Chem.  2004,  69:  3076 
  • 104d Dieter RK. Topping CM. Chandupatla KR. Lu K. J. Am. Chem. Soc.  2001,  123:  5132 
  • 104e Dieter RK. Gore VK. Chen N. Org. Lett.  2004,  6:  763 
  • 104f Harrison JR. O’Brien P. Synth. Commun.  2001,  31:  1155 
  • 104g Nikolic NA. Beak P. Org. Synth.  1997,  74:  23 
  • 105 Dieter RK. Chen N. Watson RT. Tetrahedron  2005,  61:  3221 
  • 106 For the dynamic thermodynamic resolution of N-alkyl-2-lithiopyrrolidines with (-)-sparteine (5), see: Coldham I. Dufour S. Haxell TFN. Vennall GP. Tetrahedron  2005,  61:  3205 
  • 107a Ashweek NJ. Coldham I. Haxell TFN. Howard S. Org. Biomol. Chem.  2003,  1:  1532 
  • 107b Coldham I. Copley RCB. Haxell TFN. Howard S. Org. Lett.  2001,  3:  3799 
  • 107c Kise N. Urai T. Yoshida J. Tetrahedron: Asymmetry  1998,  9:  3125 
  • 107d Bertini Gross KM. Jun YM. Beak P. J. Org. Chem.  1997,  62:  7679 
  • 108 Majewski M. Shao J. Nelson K. Nowak P. Irvine NM. Tetrahedron Lett.  1998,  39:  6787 
  • 109 For an application of the (+)-sparteine surrogate 8 in natural product synthesis, see: Morita Y. Tokuyama H. Fukuyama T. Org. Lett.  2005,  7:  4337 
  • 110 Bertini Gross KM. Beak P. J. Am. Chem. Soc.  2001,  123:  315 
  • 111 Gallagher DJ. Beak P. J. Org. Chem.  1995,  60:  7092 
  • 112 Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed.  2004,  43:  2206 
  • 113 Beak P. Basu A. Gallagher DJ. Park YS. Thayumanavan S. Acc. Chem. Res.  1996,  29:  552 
  • 114 Gallagher DJ. Kerrick ST. Beak P. J. Am. Chem. Soc.  1992,  114:  5872 
  • For studies on (-)-sparteine-MeLi and (-)-sparteine-PhLi complexes in solution, see:
  • 115a Sott R. Håkansson M. Hilmersson G. Organometallics  2006,  25:  6047 
  • 115b Rutherford JL. Hoffmann D. Collum DB. J. Am. Chem. Soc.  2002,  124:  264 
  • 116 Strohmann C. Strohfeldt K. Schildbach D. J. Am. Chem. Soc.  2003,  125:  13672 
  • The crystal structures of (-)-sparteine-organolithium complexes can vary widely. For some examples, see:
  • 117a

    Ref. 116.

  • 117b Strohmann C. Seibel T. Strohfeldt K. Angew. Chem. Int. Ed.  2003,  42:  4531 
  • 117c Vestergren M. Eriksson J. Hilmersson G. Håkansson M. J. Organomet. Chem.  2003,  682:  172 
  • 117d Strohmann C. Dilsky S. Strohfeldt K. Organometallics  2006,  25:  41 
  • 117e Pippel DJ. Weisenburger GA. Wilson SR. Beak P. Angew. Chem. Int. Ed.  1998,  37:  2522 
  • 117f Hoppe I. Marsch M. Harms K. Boche G. Hoppe D. Angew. Chem., Int. Ed. Engl.  1995,  34:  2158 
  • 118 For crystal structures of 8 with MeLi and PhLi, see: Strohmann C. Strohfeldt K. Schildbach D. McGrath MJ. O’Brien P. Organometallics  2004,  23:  5389 
  • 119 Beak P. Meyers AI. Acc. Chem. Res.  1986,  19:  356 
  • For the isomerization barrier of N-Boc-2-lithiopyrrolidine-diamine complexes, see:
  • 120a Yousaf TI. Williams RL. Coldham I. Gawley RE. Chem. Commun.  2007,  97 
  • 120b Coldham I. Dufour S. Haxell TFN. Patel JJ. Sanchez-Jimenez G. J. Am. Chem. Soc.  2006,  128:  10943 
  • 122 Wiberg KB. Bailey WF. J. Am. Chem. Soc.  2001,  123:  8231 
  • 123 Wiberg KB. Bailey WF. Angew. Chem. Int. Ed.  2000,  39:  2127 
  • 124a Würthwein E.-U. Hoppe D. J. Org. Chem.  2005,  70:  4443 
  • 124b Würthwein E.-U. Behrens K. Hoppe D. Chem. Eur. J.  1999,  5:  3459 
  • 132 For a crystal structure of TMCDA (175a) with t-BuLi, see: Strohmann C. Gessner VH. Angew. Chem. Int. Ed.  2007,  46:  8281 
  • 133 Wiberg KB. Bailey WF. Tetrahedron Lett.  2000,  41:  9365 
  • 134 Xu Z. Kozlowski MC. J. Org. Chem.  2002,  67:  3072 
  • 135 Park YS. Boys ML. Beak P. J. Am. Chem. Soc.  1996,  118:  3757 
  • 136 Park YS. Beak P. Bull. Korean Chem. Soc.  1998,  19:  1253 
  • For the use of other electrophiles, see:
  • 137a Park YS. Beak P. J. Org. Chem.  1997,  62:  1574 
  • 137b Park YS. Weisenburger GA. Beak P. J. Am. Chem. Soc.  1997,  119:  10537 
  • 137c

    Ref. 135.

  • 138 For mechanistic studies, see: Faibish NC. Park YS. Lee S. Beak P. J. Am. Chem. Soc.  1997,  119:  11561 
  • For applications of (+)-sparteine (ent-5), (-)-α-iso­sparteine (148), and other diamines in the deprotonation of O-organyl carbamates, see:
  • 141a Helmke H. Hoppe D. Synlett  1995,  978 
  • 141b Heinl T. Retzow S. Hoppe D. Fraenkel G. Chow A. Chem. Eur. J.  1999,  5:  3464 
  • 141c

    Ref. 124b.

  • 142 Tomooka K. Shimizu H. Inoue T. Shibata H. Nakai T. Chem. Lett.  1999,  759 
  • 143 It should be noted that the first asymmetric deprotonation of 179 was done in the Hoppe group, albeit under non-optimized conditions; see: Behrens K. Fröhlich R. Meyer O. Hoppe D. Eur. J. Org. Chem.  1998,  2397 
  • For the deprotonation-rearrangement of related meso-epoxides, see, inter alia:
  • 145a Hodgson DM. Galano J.-M. Christlieb M. Tetrahedron  2003,  59:  9719 
  • 145b Hodgson DM. Cameron ID. Christlieb M. Green R. Lee GP. Robinson LA. J. Chem. Soc., Perkin Trans. 1  2001,  2161 
  • 145c Hodgson DM. Cameron ID. Org. Lett.  2001,  3:  441 
  • 145d Hodgson DM. Robinson LA. Chem. Commun.  1999,  309 
  • For the deprotonation-alkylation of meso-epoxides, see, for example:
  • 146a Hodgson DM. Gras E. Angew. Chem. Int. Ed.  2002,  41:  2376 
  • 146b Hodgson DM. Buxton TJ. Cameron ID. Gras E. Kirton EHM. Org. Biomol. Chem.  2003,  1:  4293 
  • 147 For (-)-sparteine-mediated rearrangements of 15 accelerated by addition of the Lewis acid BF3˙OEt2, see: Vrancken E. Alexakis A. Mangeney P. Eur. J. Org. Chem.  2005,  1354 
  • 148 Muci AR. Campos KR. Evans DA. J. Am. Chem. Soc.  1995,  117:  9075 
  • 149 Park YY. Chang W.-S. Bae S.-K. J. Korean Chem. Soc.  1999,  43:  366 
  • For further enantioselective deprotonation-electrophilic trapping reactions of phosphines, see:
  • 150a Imamoto T. Watanabe J. Wada Y. Masuda H. Yamada H. Tsuruta H. Matsukawa S. Yamaguchi K. J. Am. Chem. Soc.  1998,  120:  1635 
  • 150b Wolfe B. Livinghouse T. J. Org. Chem.  2001,  66:  1514 
  • 150c Tang W. Zhang X. Angew. Chem. Int. Ed.  2002,  41:  1612 
  • 150d Dolhem F. Johansson MJ. Antonsson T. Kann N. Synlett  2006,  3389 
  • 150e Dolhem F. Johansson MJ. Antonsson T. Kann N. J. Comb. Chem.  2007,  9:  477 
  • 150f Heath H. Wolfe B. Livinghouse T. Bae SK. Synthesis  2001,  2341 
  • 150g

    Refs. 26 and 27.

  • For the (-)-sparteine-mediated dynamic resolution of racemic phosphine boranes, see:
  • 151a Wolfe B. Livinghouse T. J. Am. Chem. Soc.  1998,  120:  5116 
  • 151b

    Ref. 150f.

  • 152 Hodgson DM. Lee GP. Tetrahedron: Asymmetry  1997,  8:  2303 
  • 153a Bagdanoff JT. Ferreira EM. Stoltz BM. Org. Lett.  2003,  5:  835 
  • 153b Jensen DR. Sigman MS. Org. Lett.  2003,  5:  63 
  • 153c Mandal SK. Sigman MS. J. Org. Chem.  2003,  68:  7535 
  • 153d Bagdanoff JT. Stoltz BM. Angew. Chem. Int. Ed.  2004,  43:  353 
  • 153e Caspi DD. Ebner DC. Bagdanoff JT. Stoltz BM. Adv. Synth. Catal.  2004,  346:  185 
  • 153f Mueller JA. Cowell A. Chandler BD. Sigman MS. J. Am. Chem. Soc.  2005,  127:  14817 
  • 153g Tambar UK. Ebner DC. Stoltz BM. J. Am. Chem. Soc.  2006,  128:  11752 
  • 153h Sigman MS. Jensen DR. Acc. Chem. Res.  2006,  39:  221 
  • For related Pd-sparteine-catalyzed oxidative cyclizations, see:
  • 154a Trend RM. Ramtohul YK. Ferreira EM. Stoltz BM. Angew. Chem. Int. Ed.  2003,  42:  2892 
  • 154b Trend RM. Ramtohul YK. Stoltz BM. J. Am. Chem. Soc.  2005,  127:  17778 
  • 155 Jensen DR. Pugsley JS. Sigman MS. J. Am. Chem. Soc.  2001,  123:  7475 
  • 156 The selectivity factor k rel is a measurement for the ability of a catalyst to differentiate between the enantiomers. It is defined as k rel = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 + ee)], with ee = enantiomeric excess and C = conversion; see: Kagan HB. Fiaud JC. Top. Stereochem.  1988,  18:  249 
  • 157 Trend RM. Stoltz BM. J. Am. Chem. Soc.  2004,  126:  4482 
  • For further mechanistic studies, see:
  • 158a Mueller JA. Jensen DR. Sigman MS. J. Am. Chem. Soc.  2002,  124:  8202 
  • 158b Mueller JA. Sigman MS. J. Am. Chem. Soc.  2003,  125:  7005 
  • 158c Nielsen RJ. Keith JM. Stoltz BM. Goddard WA. J. Am. Chem. Soc.  2004,  126:  7967 
6

To the best of our knowledge, the technical procedure for the isolation of (-)-sparteine (5) is not published. All literature available refers to the original isolation procedures (refs. 5a,b), which delivers 5 from Cytisus scoparius in 0.03 mass%.

8

According to a Beilstein search, Nov. 2007.

9

For a discussion of early applications of (-)-sparteine (5) in asymmetric synthesis, see ref. 42a.

17

It should be noted that most of the allyllithium compounds known are configurationally labile at -78 ˚C; see, inter alia, refs. 42a,b,f.

41

(-)-Sparteine (5) is commercially available, as the free base or as the sulfate pentahydrate, from, for example, Sigma-Aldrich, ABCR, Acros, and TCI.

51

Bispidines with chiral side chains prepared for pharma-ceutical purposes are not included.

59

For the preparation of ent-52a, see ref. 61.

88

The C 2-symmetric epimer of (-)-sparteine (5) with two exo-annelated piperidine rings, (-)-β-isosparteine, also known as l-spartalupine and pusilline, has not been used as a chiral auxiliary in asymmetric synthesis until now.

94

Although of no synthetic importance, (-)-sparteine (5) can be obtained analogously from rac-lupanine (rac-147) by resolution with l-CSA and reduction.

100

The cyclization of 141 to 142 or ent-142 was later improved to 68% yield by changing the solvent from EtOH to DMF, see Scheme  [²7] and ref. 85. Adaptation of this protocol would raise the overall yield from 9% to 14%.

101

For a comparison of 8 vs. 5, see refs. 4 and 45.

121

The high configurational stability of α-lithio N-Boc-pyrrolidine is also obvious from the following experiment: (S)-tributylstannyl N-Boc-pyrrolidine (96% ee), subjected to a tin-lithium exchange using s-BuLi or s-BuLi-TMEDA, gives, after electrophilic trapping with TMSCl, 12 in 93% ee (15% yield) or 74% ee (36% yield), respectively; see ref. 15.

125

The original experiment by Lesma et al.48 was performed with 134 leading to 12.

126

Deprotonation of 11 with 1.3 equivalents of 8-s-BuLi and 1.3 equivalents of 5-s-BuLi gave, after trapping with TMSCl, ent-12 in 80% ee, thus indicating that 8 is about ten times more reactive than 5, see ref. 29.

127

It should be noted that diminished enantioselectivities in reactions with low conversions might be a consequence of competing deprotonation processes with low stereocontrol that are mediated by other unknown diamine-RLi adducts, which are not of importance if the ‘correct’ diamine-RLi adduct possesses a decent reactivity.

128

The original experiment by Kozlowski et al.64 was performed with 78 leading to ent-12.

129

Breuning, M.; Steiner, M. unpublished results.

130

In should be mentioned that the formation of prelithiation complexes between the ligand 131e, s-BuLi, and other substrates is very probable, since 131e gives acceptable to good yields and enantioselectivities in the deprotonation of the O-alkyl carbamate 179 and the phosphine boranes 17, 181, and 182 (see Section 3.3).

131

Amongst others, the Li+ complexes of the following diamines have been used: 5, ent-8, 78, ent-134, 148 (see Figure  [³] ), ent-36, ent-53, ent-64 (see Figure  [5] ), 166, 175, 176a, 176c, and ent-176b (see Figure  [7] ).

139

Enantioselective deprotonations of O-alkyl carbamates were widely investigated by Hoppe and co-workers; see refs. 11a-d,f and 124.

140

For quantum chemical calculations on the deprotonation of O-alkyl carbamates, see the end of Section 3.1.1 and ref. 124.

144

For the use of other electrophiles, see, inter alia, refs. 12 and 13.