RSS-Feed abonnieren
DOI: 10.1055/s-2008-1067020
Microwave-Irradiated Transition-Metal Catalysis: Rapid and Efficient Dehydrative Carbon-Carbon Coupling of Alcohols with Active Methylenes
Publikationsverlauf
Publikationsdatum:
11. April 2008 (online)
Abstract
A rapid and highly productive synthetic microwave-irradiation protocol for transition-metal-catalyzed carbon-carbon coupling of a wide range of benzylic/allylic alcohols with β-diones, β-keto esters, and dialkyl malonates is reported. In a representative screening of transition-metal catalysts, salts of Zn, Cu, Fe, Sc, Ru, Pt, Ta, and Mo were found to furnish the coupling products. In light of the results obtained, among all of these catalysts copper(II) triflate was found to be relatively more effective compared to other catalysts even in the case of a less reactive benzyl alcohol or diester. Interestingly, these MW-irradiated reactions are performed in a more or less MW-transparent medium, such as toluene, having a very low tanδ, or under neat conditions.
Key words
alcohols - alkylations - catalysis - C-C coupling - dicarbonyl compounds - microwave irradiation - transition metals
- MW-assisted metal-based organic synthesis, see:
-
1a
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250 -
1b
Liu S.Xiao J. J. Mol. Catal. A: Chem. 2007, 270: 1 -
1c
Strauss CR.Varma RS. Top. Curr. Chem. 2006, 266: 199 -
1d
de la Hoz A.Diaz-Ortiz A.Moreno A. Adv. Org. Synth. 2005, 1: 119 -
1e
Larhed M.Moberg C.Hallberg A. Acc. Chem. Res. 2002, 35: 717 - MW-assisted C-C coupling reactions, see:
-
2a
Microwaves in Organic Synthesis
Loupy A. Wiley-VCH; Weinheim: 2006. -
2b
Microwave-Assisted Organic Synthesis
Tierney JP.Lidstrom P. Blackwell; Oxford: 2005. -
2c
Nilsson P.Olofsson K.Larhed M. Top. Curr. Chem. 2006, 266: 103 -
2d
Alonso F.Beletskaya IP.Yus M. Tetrahedron 2005, 61: 11771 -
2e
Leadbeater NE. Chem. Commun. 2005, 2881 - Selected reports, see:
-
3a
Koubachi J.El Kazzouli S.Berteina-Raboin S.Mouaddib A.Guillaumet G. J. Org. Chem. 2007, 72: 7650 -
3b
Pchalek K.Hay MP. J. Org. Chem. 2006, 71: 6530 -
3c
Walla P.Kappe CO. Chem. Commun. 2004, 564 -
3d
Lindh J.Enquist P.-A.Pilotti A.Nilsson P.Larhed M. J. Org. Chem. 2007, 72: 7957 -
3e
Erdelyi M.Gogoll A. J. Org. Chem. 2001, 66: 4165 -
3f
Bonnaterre F.Bois-Choussy M.Zhu J. Org. Lett. 2006, 8: 4351 - 4 For some reports using RX that undergo HX elimination, see:
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.Fleming I. Pergamon Press; Oxford: 1991. - Cobalt derivatives in alkylation using RX, see:
-
5a
Moreno-Manas M.Marquet J.Vallribera A. Tetrahedron 1996, 52: 3377 -
5b
Marquet J.Moreno-Manas M.Pacheco P.Vallribera A. Tetrahedron Lett. 1988, 29: 1465 - Using traditional bases, see:
-
5c
Lee H.-S.Park J.-S.Kim BM.Gellman SH. J. Org. Chem. 2003, 68: 1575 -
5d
Zhu J.You L.Zhao SX.White B.Chen JG.Skonezny PM. Tetrahedron Lett. 2002, 43: 7585 - For C-C coupling using alkenes, see:
-
6a
Nguyen R.-V.Li C.-J. J. Am. Chem. Soc. 2005, 127: 17184 -
6b
Reetz MT.Chatziiosifidis I.Schwellnus K. Angew. Chem., Int. Ed. Engl. 1981, 20: 687 -
6c
Wang X.Pei T.Han X.Widenhoefer RA. Org. Lett. 2003, 5: 2699 -
6d
Leitner A.Larsen J.Steffens C.Hartwig JF. J. Org. Chem. 2004, 69: 7552 -
6e
Yip K.-T.Li J.-H.Lee O.-Y.Yang D. Org. Lett. 2005, 7: 5717 -
6f
Li Z.Li C.-J. J. Am. Chem. Soc. 2006, 128: 56 - For alkylations using allylic alcohols involving a co-catalyst under Tsuji-Trost-type conditions, see:
-
7a
Ozawa F.Okamoto H.Kawagishi S.Yamamoto S.Minami T.Yoshifuji M. J. Am. Chem. Soc. 2002, 124: 10968 -
7b
Kinoshita H.Shinokubo H.Oshima K. Org. Lett. 2004, 6: 4085 -
7c
Kimura M.Mukai R.Tanigawa N.Tanaka S.Tamaru Y. Tetrahedron 2003, 59: 7767 -
7d Alkylation without a co-catalyst but with an equimolar amount of catalyst, see:
Baruah JB.Samuelson AG. J. Organomet. Chem. 1989, 361: C57 -
7e Alkylation in AcOH (15 mL) using allyl alcohol, see:
Mukhopadhyay M.Iqbal J. Tetrahedron Lett. 1995, 36: 6761 - Using allylic acetates, for example, see:
-
7f
Tanaka Y.Mino T.Akita K.Sakamoto M.Fujita T. J. Org. Chem. 2004, 69: 6679 -
8a
Mulder JA.Kurtz KCM.Hsung RP. Synlett 2003, 1379 -
8b
Trost BM. Acc. Chem. Res. 2002, 35: 695 -
9a
Yasuda M.Somyo T.Baba A. Angew. Chem. Int. Ed. 2006, 45: 793 - In the course of this work the following reports (using MeNO2 solvent) appeared very recently:
-
9c
Rueping M.Nachtsheim BJ.Kuenkel A. Org. Lett. 2007, 9: 825 -
9d
Kischel J.Mertins K.Michalik D.Zapf A.Beller M. Adv. Synth. Catal. 2007, 349: 865 -
9e
Noji M.Konno Y.Ishii K. J. Org. Chem. 2007, 72: 5161 -
9f
Huang W.Wang J.Shen Q.Zhou X. Tetrahedron Lett. 2007, 48: 3969 -
9g Brønsted acids in heptane see:
Motokura K.Nakagiri N.Mizugaki T.Ebitani K.Kaneda K. J. Org. Chem. 2007, 72: 6006 -
9h
Sanz R.Miguel D.Martinez A.Alvarez-Gutierrez JM.Rodriguez F. Org. Lett. 2007, 9: 2027 -
9i Surfactant system, see:
Shirakawa S.Kobayashi S. Org. Lett. 2007, 9: 311 -
10a
Bisaro F.Prestat G.Vitale M.Poli G. Synlett 2002, 1823 -
10b
Gullickson GC.Lewis DE. Aust. J. Chem. 2003, 56: 385 -
10c
Takahashi H.Kashiwa N.Kobayashi H.Hashimoto Y.Nagasawa K. Tetrahedron Lett. 2002, 43: 5751 -
10d
Coote SJ.Davies SG.Middlemiss D.Naylor A. Tetrahedron Lett. 1989, 30: 3581 -
10e
Khalaf AA.Roberts RM. J. Org. Chem. 1972, 37: 4227 -
11a
The ability of a specific substance to convert electromagnetic energy into heat at a given frequency and temperature is determined by the so-called loss factor tanδ, see ref. 1a.
-
11b
Gabriel C.Gabriel S.Grant EH.Halstead BSJ.Mingos DMP. Chem. Soc. Rev. 1998, 27: 213 -
11c
Some other reactions for MW irradiation in toluene are also known, see refs 1-3.
-
11d
At this stage, perhaps we cannot ignore the point that the reaction in solvents having coordinating ability (with the catalyst) might decrease the activation of the catalyst in MW irradiation. We thank the referee for indicating this point.
-
11e
Exceptionally, in the case of toluene, no difference was noted for the highly reactive substrates 1a/2a at this high temperatures.
-
11f
We used toluene because of its higher boiling point than other nonpolar solvents and naturally, toluene was selected as an ecofriendly solvent.
- 12
3a,d:
Marquet J.Moreno-mañas M. Synthesis 1979, 348 - 13
3b:
Karban JW.Aparicio MK.Palacios RR.Richardson KA.Klausmeyer KK. Acta Crystallogr. Sect. E 2004, 60: o2043 - 14
3c:
Sabatier P.Mailhe A. C. R. Hebd. Seances Acad. Sci. 1907, 145: 1126 - 15
3e,t
:
González A.Marquet J.Moreno-Mañas M. Tetrahedron Lett. 1988, 29: 1469 - 16
3f: see ref. 6f
- 17
3g:
Nguyen R.-V.Yao X.-Q.Bohle DS.Li C.-J. Org. Lett. 2005, 7: 673 - 18
3h: see ref. 7e
- 19
3j: see ref. 10a
- 20
3m:
Jana U.Biswas S.Maiti S. Tetrahedron Lett. 2007, 48: 4065 - 21
3o:
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1997, 38: 3557 - 22
3r:
Polivin YN.Postnov VN.Sazonova VA.Zagorevskii DV.Nekrasov YS.Kharchevnikov AP. J. Organomet. Chem. 1985, 288: 201 - 23
3s: see ref. 9e