Horm Metab Res 2008; 40(7): 473-478
DOI: 10.1055/s-2008-1065348
Animals, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Antiatherogenic Effects of Cilostazol and Probucol Alone, and in Combination in Low Density Lipoprotein Receptor-deficient Mice Fed with a High Fat Diet

T. Yoshikawa 1 , K. Mitani 1 , K. Kotosai 1 , M. Nozako 1 , G. Miyakoda 1 , Y. Yabuuchi 1
  • 1Free Radical Research Institute, Ostuka Pharmaceutical Co., Ltd., Tokushima, Japan
Weitere Informationen

Publikationsverlauf

received 28.08.2007

accepted 15.11.2007

Publikationsdatum:
10. April 2008 (online)

Abstract

Cilostazol, an antiplatelet drug, and probucol, a cholesterol-lowering drug, are reported to ameliorate atherosclerosis in animal models. However, their combined effect on atherosclerosis is unclear. We therefore evaluated their combined effect on atherosclerotic lesions in LDL receptor-deficient mice. Male LDL receptor-deficient mice were fed a high fat diet with or without cilostazol alone, probucol alone, or with cilostazol and probucol in combination, for 8 weeks. Body weight and plasma lipid levels were measured before and during treatment. At the end of treatment, the size distribution of plasma lipoproteins was analyzed by HPLC and then plasma HDL cholesterol levels and en face aortic atherosclerotic lesion areas were measured. Probucol alone significantly decreased both total cholesterol and HDL cholesterol, while cilostazol alone did not decrease total cholesterol, but significantly increased HDL cholesterol. Both cilostazol alone and probucol alone significantly decreased atherosclerotic lesion areas, and their combined administration showed more significant decreases than when each drug was administered singly. The combination of cilostazol and probucol was more effective in preventing atherosclerotic lesion formation than the administration of each drug alone; this may provide us with a new strategy for treating atherosclerosis.

References

  • 1 Heart Protection Study Collaborative Group. . MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial.  Lancet. 2002;  360 7-22
  • 2 Sever PS, Dahlöf B, Poulter NR. et al . Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial.  Lancet. 2003;  361 1149-1158
  • 3 Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM. The pathogenesis of atherosclerosis: an overview.  Clin Cardiol. 1991;  14 I-1-16
  • 4 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s.  Nature. 1993;  362 801-809
  • 5 Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein.  J Clin Invest. 1986;  77 641-644
  • 6 Ferns GAA, Forster L, Stewart-Lee A, Nourooz-Zadeh J, Änggård EE. Probucol inhibits mononuclear cell adhesion to vascular endothelium in the cholesterol-fed rabbit.  Atherosclerosis. 1993;  100 171-181
  • 7 Kita T, Nagano Y, Yokode M. et al . Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.  Proc Natl Acad Sci USA. 1987;  84 5928-5931
  • 8 Rio MD, Chulia T, Ruiz E, Tejerina T. Action of probucol in arteries from normal and hypercholesterolaemic rabbits.  Br J Pharmacol. 1996;  118 1639-1644
  • 9 Sasahara M, Raines EW, Chait A. et al . Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol: I. Is the extent of atherosclerosis related to resistance of LDL to oxidation?.  J Clin Invest. 1994;  94 155-164
  • 10 Yoshikawa T, Shimano H, Chen Z, Ishibashi S, Yamada N. Effects of probucol on atherosclerosis of apoE-deficient or LDL receptor-deficient mice.  Horm Metab Res. 2001;  33 472-479
  • 11 Zapolska-Downar D, Zapolski-Downar A, Markiewski M. et al . Selective inhibition by probucol of vascular cell adhesion molecule-1 (VCAM-1) expression in human vascular endothelial cells.  Atherosclerosis. 2001;  155 123-130
  • 12 Fruebis J, Gonzalez V, Silvestre M, Palinski W. Effect of probucol treatment on gene expression of VCAM-1, MCP-1 and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis.  Arterioscler Thromb Vasc Biol. 1997;  17 1289-1302
  • 13 Libby P. Inflammation in atherosclerosis.  Nature. 2002;  420 868-874
  • 14 Tardif JC, Côté G, Lespérance J. et al . Probucol and multivitamins in the prevention of restenosis after coronary angioplasty.  N Engl J Med. 1997;  337 365-372
  • 15 Daida H, Kuwabara Y, Yokoi H. et al . Effect of probucol on repeat revascularization rate after percutaneous transluminal coronary angioplasty (from the Probucol Angioplasty Restenosis Trial [PART]).  Am J Cardiol. 2000;  86 550-552
  • 16 Sawayama Y, Shimizu C, Maeda N. et al . Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia: Fukuoka Atherosclerosis Trial (FAST).  J Am Coll Cardiol. 2002;  39 610-616
  • 17 Kim KY, Shin HK, Choi JM, Hong KW. Inhibition of lipopolisaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells.  J Pharmacol Exp Ther. 2002;  300 709-715
  • 18 Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol.  Circulation. 2004;  109 1022-1028
  • 19 Park SY, Lee JH, Kim CD. et al . Cilostazol suppresses superoxide production and expression of adhesion molecules in human endothelial cells via mediation of cAMP-dependent protein kinase-mediated maxi-K channel activation.  J Pharmacol Exp Ther. 2006;  317 1238-1245
  • 20 DaRosa MP, Boroni GV, Portal VL. Cilostazol, a phosphodiesterase III inhibitor: future prospects for atherosclerosis.  Arq Bras Cardiol. 2006;  87 e221-e225
  • 21 Takase H, Hashimoto A, Okutsu R. et al . Anti-atherosclerotic effect of cilostazol in apolipoprotein-E knockout mice.  Arzneimittelforschung. 2007;  57 185-191
  • 22 Lee JH, Oh GT, Park SY. et al . Cilostazol reduces atherosclerosis by inhibition of superoxide and tumor necrosis factor-α formation in low-density lipoprotein receptor-null mice fed high cholesterol.  J Pharmacol Exp Ther. 2005;  313 502-509
  • 23 Douglas  Jr  JS, Holmes  Jr  DR, Kereiakes DJ. et al . Coronary stent restenosis in patients treated with cilostazol.  Circulation. 2005;  112 2826-2832
  • 24 Sekiya M, Funada J, Watanabe K, Miyagawa M, Akutsu H. Effects of probucol and cilostazol alone and in combination on the frequency of poststenting restenosis.  Am J Cardiol. 1998;  82 144-147
  • 25 Ishibashi S, Brown MS, Goldstein JL. et al . Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery.  J Clin Invest. 1993;  92 883-893
  • 26 Gordon DJ, Rifkind BM. High-density lipoprotein: the clinical implications of recent studies.  N Engl J Med. 1989;  321 1311-1316
  • 27 Zhang SH, Reddick RL, Avdievich E. et al . Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice.  J Clin Invest. 1997;  99 2858-2866
  • 28 Pászty C, Maeda N, Verstuyft J, Rubin EM. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice.  J Clin Invest. 1994;  94 899-903
  • 29 Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse.  Proc Natl Acad Sci USA. 1994;  91 9607-9611
  • 30 Ishigami M, Yamashita S, Sakai N. et al . High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins.  Eur J Clin Invest. 1997;  27 285-292
  • 31 Hirano K, Ikegami C, Tsujii K. et al . Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism.  Arterioscler Thromb Vasc Biol. 2005;  25 2422-2427
  • 32 Matsuzawa Y, Yamashita S, Funahashi T, Yamamoto A, Tarui S. Selective reduction of cholesterol in HDL2 fraction by probucol in familial hypercholesterolemia and hyperHDL2 cholesterolemia with abdominal cholesteryl ester transfer.  Am J Cardiol. 1988;  62 66B-72B
  • 33 Kobayashi J, Kusunoki M, Murase Y. et al . Relationship of lipoprotein lipase and hepatic triacylglycerol lipase activity to serum adiponectin levels in Japanese hyperlipidemic men.  Horm Metab Res. 2005;  37 505-509
  • 34 Kobayashi J, Nakajima K, Nohara A. et al . The relationship of serum lipoprotein lipase mass with fasting serum apolipoprotein B-48 and remnant-like particle triglycerides in type 2 diabetic patients.  Horm Metab Res. 2007;  39 612-616
  • 35 Tall AR, Yvan-Charvet L, Wang N. The Failure of Torcetrapib: was it the Molecule or the Mechanism?.  Arterioscler Thromb Vasc Biol. 2007;  27 257-260
  • 36 Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus.  JAMA. 2005;  294 2581-2586

Correspondence

T. YoshikawaPhD 

Free Radical Research Institute

Ostuka Pharmaceutical Co., Ltd.

463-10 Kagasuno Kawauchi-cho

771-0192 Tokushima

Japan

Telefon: +81/88/665 21 26

Fax: +81/88/665 69 76

eMail: t_yoshikawa@research.otsuka.co.jp