Moderne Fasermaterialien bieten bisher nicht gekannte Möglichkeiten der minimalinvasiven Vorgehensweise. Vor allem die Versorgung von kleinen begrenzten Lücken (ein oder zwei fehlende Zähne) bei weitgehend gesunden Nachbarzähnen ist mithilfe von minimalinvasiven oder nicht invasiven faserverstärkten Kompositbrücken möglich. Geht ein Zahn verloren (Abb. [1]), kann heute durch faserverstärkte Kompositbrücken unter Beachtung der Indikationen dem Wunsch des Patienten nach einem unkomplizierten, sofortigen Zahnersatz durchaus entsprochen werden.
Abb. 1 a bis ea 65-jährige Patientin mit Zahnverlust 41 und gesunden Nachbarzähnen 31, 42. b Zum Ersatz von Zahn 41 trägt sie eine Modellgussprothese. c Modellgussprothese zum Ersatz von Zahn 41. d Der Patientin wurde eine festsitzende Versorgung in Form einer glasfaserverstärkten Kompositbrücke eingegliedert. Zur Lückenverkleinerung wurden die Zähne 42 und 31 im Sinne einer Formkorrektur mittels direkt eingebrachtem Komposit verbreitert. e Ansicht der glasfaserverstärkten Kompositbrücke von palatinal.
Faserverstärkte Komposite für die Anwendung in der Zahntechnik wurden schon in den frühen 1960ern entwickelt, um Prothesenbasen zu verstärken [[1]]. Durch intensive Weiterentwicklung wurden materialspezifische Probleme, wie der Verbund zwischen Fasern und Kompositmatrix, gelöst. Die hohe Stabilität faserverstärkter Verbundwerkstoffe wird deutlich, wenn man deren technische Anwendung im Flugzeug- und Schiffsbau betrachtet [[2]].
Anwendungsbereiche faserverstärkter Komposite
Verstärkung von Prothesenbasen herausnehmbarer Prothesen [[3]–[8]]
Verstärkung von Kompositbrücken
faserverstärkte Wurzelstifte
parodontale Verblockungen
kieferorthopädische Retainer
Reparatur von Keramikveneers
Literatur
1
Smith D C.
Recent developments and prospects in dental polymers.
J Prosthet Dent.
1962;
12
1066-1078
2 Freilich M A. Rationale for the clinical use of fiberreinforced composites. Freilich MA Meiers JC, Duncan JP, goldberg AJ Fiber-Reinforced Composites in Clinical Dentistry. Chicago; Quintessence Publishing 2001
3
Vallittu P K.
Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study.
Quintessence Int.
1997;
28
39-44
6
Ladizesky N H, Chow T W, Ward I M.
The effect of highly drawn polyethylene fibres on the mechanical properties of denture base resins.
Clin Mater.
1990;
6
209-225
7
Ladizesky N H, Ho C F, Chow T W.
Reinforcement of complete denture bases with continuous high performance polyethylene fibers.
J Prosthet Dent.
1992;
68
934-939
9
Goldberg A J. et al .
Screening of matrices and fibers for reinforced thermoplastics intended for dental applications.
J Biomed Mater Res.
1994;
28
167-173
10
Tanner J. et al .
Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.
J Biomed Mater Res B Appl Biomater.
2003;
66
391-398
11
Tanner J, Vallittu P K, Soderling E.
Adherence of Streptococcus mutans to an E‐glass fiber-reinforced composite and conventional restorative materials used in prosthetic dentistry.
J Biomed Mater Res.
2000;
49
250-256
12
Tanner J, Vallittu P K, Soderling E.
Effect of water storage of E‐glass fiber-reinforced composite on adhesion of Streptococcus mutans.
Biomaterials.
2001;
22
1613-1618
13
Vallittu P K.
Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material.
J Oral Rehabil.
1993;
20
533-539
14
Vallittu P K.
Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl methacrylate: a short communication.
Dent Mater.
1997;
13
381-382
15
Vallittu P K.
The effect of glass fiber reinforcement on the fracture resistance of a provisional fixed partial denture.
J Prosthet Dent.
1998;
79
125-130
17
Lassila L V, Vallittu P K.
The effect of fiber position and polymerization condition on the flexural properties of fiber-reinforced composite.
J Contemp Dent Pract.
2004;
5
14-26
19
Lassila L V, Nohrstrom T, Vallittu P K.
The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites.
Biomaterials.
2002;
23
2221-2229
20
Kallio T T, Lastumaki T K, Vallittu P K.
Bonding of restorative and veneering composite resin to some polymeric composites.
Dent Mater.
2001;
17
80-86
21
Lastumaki T M, Lassila L V, Vallittu P K.
The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties.
J Mater Sci Mater Med.
2003;
14
803-809
22
Dyer S R. et al .
Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.
J Prosthet Dent.
2005;
94
219-226
23
Vallittu P K.
Effect of 180-week water storage on the flexural properties of E‐glass and silica fiber acrylic resin composite.
Int J Prosthodont.
2000;
13
334-339
24
Nohrstrom T J, Vallittu P K, Yli-Urpo A.
The effect of placement and quantity of glass fibers on the fracture resistance of interim fixed partial dentures.
Int J Prosthodont.
2000;
13
72-78
25
Magne P. et al .
Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design.
J Prosthet Dent.
2002;
87
516-527
27
Xie Q, Lassila L V, Vallittu P K.
Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs.
J Dent.
2007;
35
578-582
29
Ozcan M, Kumbuloglu O, User A.
Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations.
Int J Prosthodont.
2008;
21
228-232
34
Akin H, Turgut M, Coskun M E.
Restoration of an anterior edentulous space with a unique glass fiber-reinforced composite removable partial denture: a case report.
J Esthet Restor Dent.
2007;
19
193-197
198
35
Eminkahyagil N, Erkut S.
An innovative approach to chairside provisional replacement of an extracted anterior tooth: use of fiber-reinforced ribbon-composites and a natural tooth.
J Prosthodont.
2006;
15
316-320
36
Smidt A.
Esthetic provisional replacement of a single anterior tooth during the implant healing phase: a clinical report.
J Prosthet Dent.
2002;
87
598-602
37
Chan D C, Giannini M, De Goes M F.
Provisional anterior tooth replacement using nonimpregnated fiber and fiber-reinforced composite resin materials: a clinical report.
J Prosthet Dent.
2006;
95
344-348
38
Vallittu P K.
Prosthodontic treatment with a glass fiber-reinforced resin-bonded fixed partial denture: A clinical report.
J Prosthet Dent.
1999;
82
132-135
40
Khan A S. et al .
Comparison of the visco-elastic behavior of a pre-impregnated reinforced glass fiber composite with resin-based composite.
Dent Mater.
2008;
24
1534-1538
42
Garoushi S. et al .
Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure.
Dent Mater.
2007;
23
17-23
44
Garoushi S K, Vallittu P K, Lassila L V.
Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures.
J Dent.
2007;
35
403-408
46
Garoushi S K. et al .
Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration and flexural properties of the material.
J Contemp Dent Pract.
2006;
7
1-8
47
Garoushi S K, Lassila L V, Vallittu P K.
Short fiber reinforced composite: the effect of fiber length and volume fraction.
J Contemp Dent Pract.
2006;
7
10-17
48
Goehring T N, Peters O A, Lutz F.
Marginal adaptation of inlay-retained adhesive fixed partial dentures after mechanical and thermal stress: an in vitro study.
J Prosthet Dent.
2001;
86
81-92
49
Kolbeck C. et al .
In vitro examination of the fracture strength of 3 different fiber-reinforced composite and 1 all-ceramic posterior inlay fixed partial denture systems.
J Prosthodont.
2002;
11
248-253
50
Kolbeck C. et al .
In vitro study of fracture strength and marginal adaptation of polyethylene-fibre-reinforced-composite versus glass-fibre-reinforced-composite fixed partial dentures.
J Oral Rehabil.
2002;
29
668-674
53
Vallittu P K.
Survival rates of resin-bonded, glass fiber–reinforced composite fixed partial dentures with a mean follow-up of 42 months: A pilot study.
J Prosthetic Dent.
2004;
91
241-246