Pneumologie 2008; 62(5): 279-283
DOI: 10.1055/s-2008-1038113
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Normobare Hypoxie: Aktuelle Implikationen für Pneumologie und Leistungsdiagnostik

Intermittent Hypoxic Training - The State of ScienceN.  Schöffel1 , T.  Senff1 , A.  Gerber2 , A.  de Roux1 , T.  T.  Bauer2 , D.  A.  Groneberg1
  • 1Abteilungen Pneumologie und Sportmedizin des Instituts für Arbeitsmedizin, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin (Direktor: Univ.-Prof. Dr. Dr. h.c. (RC) D. Groneberg)
  • 2Klinik für Pneumologie - Lungenklinik Heckeshorn, Helios-Zentralklinikum Emil-von-Behring, Berlin (Leiter: PD Dr. T. T. Bauer)
Further Information

Publication History

eingereicht 18.12.2007

akzeptiert 22.1.2008

Publication Date:
13 March 2008 (online)

Zusammenfassung

Die „Intermittierende Hypoxie” besitzt als ergänzende Trainingsform ein großes Potenzial. Studien belegen nachweislich eine verbesserte Lungenfunktion und Sauerstoffaufnahmefähigkeit (VO2 max.) bei Anwendung. Die Frage nach neuen Konzepten zur Effizienzsteigerung des Höhentrainings, vor allem in Hinsicht auf den enormen pekuniären und logistischen Aufwand, der für das Höhentraining betrieben wird, stellt sich in den letzten Jahren zunehmend. Das „Intermittierende-Hypoxie-Training” (IHT) ist eine neue und alternative Form des Höhentrainings. Zielsetzung ist die Ökonomisierung des derzeit wirksamsten und am besten evaluierten Prinzips, dem „Live High - Train Low” (LHTL). Hierbei wird versucht das Training im Flachland, das normale Training (TL), durch kurze intensive Aufenthalte in einer normobaren Hypoxie zu ergänzen, mit dem Ziel, bei geringstem Zeit- und Kostenaufwand, eine dem Höhenaufenthalt (LH) assoziierte Erythropoese zu generieren. Die vorliegende Arbeit analysiert die Ergebnisse ausgewählter Studien des IHT in Hinsicht auf Leistungssteigerungen im Allgemeinen und hämatologische Veränderungen im Speziellen.

Abstract

Intermittent hypoxic training (IHT) plays an important role concerning methods of training. Considering the enormous logistic and pecuniary investments for altitude training, there is a high demand for more efficient concepts. The intermittent hypoxic training is a new, alternative form of altitude training. The idea of IHT is to economise the currently most reliable and evaluated method which is known as “live high - train low” (LHTL). Thus, IHT combines a normal training at sea level with short training sessions in a chamber that creates a hypoxic but normobaric environment. Its aim is to initiate a similar level of erythropoesis as that usually achieved through long stays in high altitude with a minimised effort. This study analyses the results of selected studies that deal with IHT, evaluating the performance improvements in general and possible haematological variances/changes specifically.

Literatur

  • 1 Levine B D, Stray-Gundersen J. The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise.  Adv Exp Med Biol. 2001;  502 75-88
  • 2 Rusko H K, Tikkanen H O, Peltonen J E. Altitude and endurance training.  J Sports Sci. 2004;  22 928-944; discussion 945
  • 3 Brugniaux J V, Schmitt L, Robach P. et al . Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners.  J Appl Physiol. 2006;  100 203-211
  • 4 Wilber R L, Stray-Gundersen J, Levine B D. Effect of hypoxic “dose” on physiological responses and sea-level performance.  Med Sci Sports Exerc. 2007;  39 1590-1599
  • 5 Levine B D. Intermittent hypoxic training: fact and fancy.  High Alt Med Biol. 2002;  3 177-193
  • 6 Loffredo B M, Glazer J L. The ergogenics of hypoxia training in athletes.  Curr Sports Med Rep. 2006;  5 203-209
  • 7 Zoll J, Ponsot E, Dufour S. et al . Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts.  J Appl Physiol. 2006;  100 1258-1266
  • 8 Dufour S P, Ponsot E, Zoll J. et al . Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity.  J Appl Physiol. 2006;  100 1238-1248
  • 9 Ponsot E, Dufour S P, Zoll J. et al . Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.  J Appl Physiol. 2006;  100 1249-1257
  • 10 Hamlin M J, Hellemans J. Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes.  J Sports Sci. 2007;  25 431-441
  • 11 Katayama K, Matsuo H, Ishida K. et al . Intermittent hypoxia improves endurance performance and submaximal exercise efficiency.  High Alt Med Biol. 2003;  4 291-304
  • 12 Julian C G, Gore C J, Wilber R L. et al . Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners.  J Appl Physiol. 2004;  96 1800-1807
  • 13 Vallier J M, Chateau P, Guezennec C Y. Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes.  Eur J Appl Physiol Occup Physiol. 1996;  73 471-478
  • 14 Roels B, Millet G P, Marcoux C J. et al . Effects of hypoxic interval training on cycling performance.  Med Sci Sports Exerc. 2005;  37 138-146
  • 15 Morton J P, Cable N T. Effects of intermittent hypoxic training on aerobic and anaerobic performance.  Ergonomics. 2005;  48 1535-1546
  • 16 Rodriguez F A, Truijens M J, Townsend N E. et al . Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training.  J Appl Physiol. 2007;  103 1523-1535
  • 17 Villa J G, Lucia A, Marroyo J A. et al . Does intermittent hypoxia increase erythropoiesis in professional cyclists during a 3-week race?.  Can J Appl Physiol. 2005;  30 61-73
  • 18 Eckardt K U, Kurtz A, Bauer C. Triggering of erythropoietin production by hypoxia is inhibited by respiratory and metabolic acidosis.  Am J Physiol. 1990;  258 R678-683
  • 19 Gilbert C. Hyperventilation and the body.  Accid Emerg Nurs. 1999;  7 130-140
  • 20 Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia.  J Exp Biol. 2001;  204 3133-3139
  • 21 Mairbaurl H, Schobersberger W, Oelz O. et al . Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate.  J Appl Physiol. 1990;  68 1186-1194
  • 22 Messonnier L, Geyssant A, Hintzy F. et al . Effects of training in normoxia and normobaric hypoxia on time to exhaustion at the maximum rate of oxygen uptake.  Eur J Appl Physiol. 2004;  92 470-476
  • 23 Boning D. Altitude and hypoxia training - a short review.  Int J Sports Med. 1997;  18 565-570
  • 24 Takahashi H, Asano K, Nakayama H. Effect of endurance training under hypoxic condition on oxidative enzyme activity in rat skeletal muscle.  Appl Human Sci. 1996;  15 111-114
  • 25 Takahashi H, Kikuchi K, Nakayama H. Effect of chronic hypoxia on oxidative enzyme activity in rat skeletal muscle.  Ann Physiol Anthropol. 1993;  12 363-369
  • 26 Terrados N, Jansson E, Sylven C. et al . Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin?.  J Appl Physiol. 1990;  68 2369-2372
  • 27 Simon L M, Liu J, Theodore J. et al . Effect of hyperoxia, hypoxia, and maturation on superoxide dismutase activity in isolated alveolar macrophages.  Am Rev Respir Dis. 1977;  115 279-284

Norman Schöffel

Institut für Arbeitsmedizin, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin

Ostpreußendamm 111

12207 Berlin

Email: norman.schoeffel@charite.de

    >