Synlett 2008(5): 683-686  
DOI: 10.1055/s-2008-1032107
LETTER
© Georg Thieme Verlag Stuttgart · New York

Enantioselective [1,2]-Stevens Rearrangement Using Sugar-Derived Alkoxides as Chiral Promoters

Katsuhiko Tomooka*a,b, Junichiro Sakamakib, Manabu Haradab, Ryoji Wadab
a Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga-shi, Fukuoka 8168580, Japan
Fax: +81(92)5837810; e-Mail: ktomooka@cm.kyushu-u.ac.jp;
b Department of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 1528552, Japan
Further Information

Publication History

Received 21 December 2007
Publication Date:
26 February 2008 (online)

Abstract

The first example of enantioselective base-induced [1,2]-Stevens rearrangement was achieved by using the newly developed d-glucose-derived lithium alkoxide as a chiral promoter. This rearrangement provides an α-amino ketone having a pseudoquaternary chiral center in an enantioenriched form.

    References and Notes

  • 1 Stevens TS. Creighton EM. Gordon AB. MacNicol M. J. Chem. Soc.  1928,  3193 
  • For reviews, see:
  • 2a Schöllkopf U. Angew. Chem.  1970,  82:  795 
  • 2b Markó IE. In Comprehensive Organic Synthesis   Vol. 4:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.913-974  
  • 2c Vanecko JA. Wan H. West FG. Tetrahedron  2006,  62:  1043 
  • For mechanistic studies of [1,2]-Stevens rearrangement, see:
  • 3a Millard BJ. Stevens TS. J. Chem. Soc.  1963,  3397 
  • 3b Schöllkopf U. Ludwig U. Ostermann G. Patsch M. Tetrahedron Lett.  1969,  10:  3415 
  • For theoretical studies of [1,2]-Stevens rearrangement, see:
  • 3c Heard GL. Frankcombe KE. Yates BF. Aust. J. Chem.  1993,  46:  1375 
  • 3d Heard GL. Yates BF. Aust. J. Chem.  1994,  47:  1685 
  • 4a Recently, Somfai and co-workers reported the first example of enantioselective [2,3]-Stevens rearrangement of allylic ammonium ylide using chiral Lewis acid promoter: Blid J. Panknin O. Somfai P. J. Am. Chem. Soc.  2005,  127:  9352 
  • 4b

    Also, the concomitantly occurred enantioselective [1,2]-Stevens rearrangement has been reported therein.

  • Asymmetric [1,2]-Stevens rearrangement using enantioenriched ammonium ylide has been reported. For the rearrangement with chiral migrating group, see:
  • 5a Campbell A. Houston AHJ. Kenyon J. J. Chem. Soc.  1947,  93 
  • 5b Brewster JH. Kline MW. J. Am. Chem. Soc.  1952,  74:  5179 
  • 5c Joshua H. Gans R. Mislow K. J. Am. Chem. Soc.  1968,  90:  4884 
  • 5d Brewster JH. J. Org. Chem.  1969,  354 
  • 5e Harada M. Nakai T. Tomooka K. Synlett  2004,  365 
  • For the rearrangement with nitrogen chiral center, see:
  • 5f Glaeske KW. West FG. Org. Lett.  1999,  1:  31 
  • 5g Tayama E. Nanbara S. Nakai T. Chem. Lett.  2006,  35:  478 
  • Enantioselective [1,2]-Stevens rearrangement of oxonium ylide generated from a diazo compound using a chiral metal complex has been developed:
  • 6a For a representative study using copper(I) complex, see: Nozaki H. Takaya H. Moriuti S. Noyori R. Tetrahedron  1968,  24:  3655 
  • For representative studies using dirhodium(II) complex, see:
  • 6b Doyle MP. Ene DG. Forbes DC. Tedrow JS. Tetrahedron Lett.  1997,  38:  4367 
  • 6c Kitagaki S. Yanamto Y. Tsutsui H. Anada M. Nakajima M. Hashimoto S. Tetrahedron Lett.  2001,  42:  6361 
  • 9 For a review of asymmetric synthesis using chiral alkoxide, see: Plaquevent J.-C. Perrard T. Cahard D. Chem. Eur. J.  2002,  8:  3300 
  • 10 Alkoxide 3 has been utilized as a chiral ligand for asymmetric Michael reaction. See: Kumamoto T. Aoki S. Nakajima M. Koga K. Tetrahedron: Asymmetry  1994,  5:  1431 
  • Alkoxide 4 has been utilized as a chiral promoter for asymmetric hydrocyanation reaction. See:
  • 11a Holmes IP. Kagan HB. Tetrahedron Lett.  2000,  41:  7453 
  • 11b Holmes IP. Kagan HB. Tetrahedron Lett.  2000,  41:  7457 
  • 11c Hatano M. Ikeno T. Miyamoto T. Ishihara K. J. Am. Chem. Soc.  2005,  127:  10776 
  • 12 Alkoxide 5 has been utilized as a chiral initiator for asymmetric polymerization. See: Okamoto Y. Matsuda M. Nakano T. Yashima E. J. Polym. Sci., Part A: Polym. Chem.  1994,  32:  309 
  • Alkoxide 6 has been utilized as a chiral base for asymmetric elimination and chiral ligand for asymmetric alkynylation. See:
  • 13a Soai K. Yokoyama S. Hayasaka T. J. Org. Chem.  1991,  56:  4264 
  • 13b Thompson AS. Corley EG. Huntington MF. Grabowski EJJ. Tetrahedron Lett.  1995,  36:  8937 
  • 18a Seebach D. Naef R. Helv. Chim. Acta  1981,  64:  2704 
  • 18b Beck AK. Seebach D. Chimia  1988,  42:  142 
  • 19 Nebel K. Mutter M. Tetrahedron  1988,  44:  4793 
  • 20 Absolute stereochemistry of iii was confirmed by the comparison of the specific rotation of its free amine with the reported value. See: Karady S. Amato JS. Weinstock LM. Tetrahedron Lett.  1984,  25:  4337 
  • For representative studies on asymmetric synthesis using sugar derivatives as chiral auxiliary, see:
  • 21a Kunz H. Mohy J. J. Chem. Soc., Chem. Commun.  1988,  1315 
  • 21b Kakinuma K. Li H.-Y. Tetrahedron Lett.  1989,  31:  4157 
  • 21c Tomooka K. Nakamura Y. Nakai T. Synlett  1995,  321 
  • 21d Kishida M. Eguchi T. Kakinuma K. Tetrahedron Lett.  1996,  37:  2061 
  • 21e For a representative study on asymmetric synthesis using sugar derivatives as chiral ligand, see: Riediker M. Duthaler RO. Angew. Chem., Int. Ed. Engl.  1989,  28:  494 
  • Synthesis and structural study of alkoxide 8 has been reported. See:
  • 22a Piarulli U. Williams DN. Floriani C. Gervasio G. Viterbo D. J. Chem. Soc., Chem. Commun.  1994,  1409 
  • 22b Piarulli U. Williams DN. Floriani C. Gervasio G. Viterbo D. J. Chem. Soc., Chem. Commun.  1995,  3329 
  • The corresponding alcohols of 10, 11, and 13 have been reported:
  • 25a For 10, see: Einhorn C. Luche J. Carbohydr. Res.  1986,  155:  258 
  • 25b For 11, see: Luboradzki R. Pakulski Z. Sartowska B. Tetrahedron  2005,  61:  10122 
  • 25c For 13, see: Mereyala HB. Kodyry SR. Cheemalapati VN. Tetrahedron: Asymmetry  2006,  17:  259 
7

All the ammonium salts were prepared from the corresponding α-amino ketones and alkyl bromides and purified by recrystallization.

8

Alkoxides were prepared from the corresponding alcohols using n-BuLi (1 equiv) at 0 °C.

14

HPLC analysis was carried out on a Chiralcel OD-H column (0.46 × 25 cm) using hexane-i-PrOH (150:1; 0.5 mL/min) as the mobile phase.

15

A rapid racemization of a similar chiral α-amino ketone under weakly basic conditions had been observed; see ref. 5e.

16

All the compounds were characterized by 1H and 13C NMR analyses. Data for selected products are as follows. 1b: 1H NMR (300 MHz, CDCl3): = 8.48 (d, J = 7.5 Hz, 2 H), 7.50-7.70 (m, 8 H), 6.88 (q, J = 7.2 Hz, 1 H), 5.29 (d, J = 12.0 Hz, 1 H), 5.06 (d, J = 12.0 Hz, 1 H), 3.42 (s, 3 H), 3.34 (s, 3 H), 1.79 (d, J = 7.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): = 196.8, 135.4, 134.0, 133.6, 131.0, 129.9, 129.5, 129.3, 126.7, 69.4, 66.5, 48.1, 47.0, 14.1. 2b: 1H NMR (300 MHz, CDCl3): = 8.46 (d, J = 6.9 Hz, 2 H), 6.90-7.50 (m, 8 H), 3.46 (d, J = 12.3 Hz, 1 H), 2.96 (d, J = 12.3 Hz, 1 H), 2.36 (s, 6 H), 1.18 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 203.1, 137.7, 137.6, 132.5, 130.9, 130.5, 128.3, 128.1, 126.5, 72.2, 41.2, 39.0, 14.5. 14: 1H NMR (300 MHz, acetone-d 6): = 5.83 (d, J = 3.6 Hz, 1 H), 4.48 (d, J = 3.6 Hz, 1 H), 4.38 (ddd, J = 6.6, 6.6, 8.4 Hz, 1 H), 4.16 (d, J = 2.7 Hz, 1 H), 4.12 (dd, J = 2.7, 6.6 Hz, 1 H), 4.10 (dd, J = 6.6, 8.1 Hz, 1 H), 3.80 (dd, J = 8.1, 8.4 Hz, 1 H), 2.82 (s, 1 H), 1.90-2.10 (m, 2 H), 1.40-1.60 (m, 10 H), 0.90 (s, 3 H), 0.90 (s, 3 H), 0.88 (s, 3 H), 0.87 (s, 3 H). 13C NMR (75 MHz, CDCl3): = 117.2, 112.7, 105.2, 84.6, 82.1, 75.6, 75.0, 71.2, 36.4, 35.6, 34.4, 33.7, 24.8, 23.8, 23.4, 17.4, 17.2.

17

Similar reactions using alkoxides 3-5 afforded racemic 2b in 16-29% yields.

23

Significant countercation-effect for enantioselectivity was observed, i.e., the reaction using the corresponding K or Na alkoxide of 8 afforded only the racemic 2b in moderate yields.

24

The enantioselectivity significantly decreased (18% ee), when one equivalent of 8 was used.

26

Typical Experimental Procedure: To a solution of 1,2-O-cyclohexylidene-5,6-O-(diisopropyl)methylidene-α-d-glucofuranose (14a; 104 mg, 0.29 mmol) in anhyd toluene (2 mL), was added a solution of n-BuLi (0.21 mL of 1.37 M solution in hexane, 0.29 mmol) at 0 °C. After stirring for 30 min at that temperature, benzyldimethyl(α-methylphen-acyl)ammonium bromide (1b; 10.0 mg, 0.029 mmol) was added. Then, the temperature of the resulting solution was allowed to rise to r.t. and the mixture was stirred for 8 h. The reaction was quenched with pH 7 phosphate buffer, and the product was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, filtered, and the solvent was removed in vacuo. The residue was purified by silica gel chromatography to afford the α-amino ketone (S)-2b (7.0 mg, 91%, 61% ee) and recovered 14a (103 mg, 99%).