RSS-Feed abonnieren
DOI: 10.1055/s-2008-1032071
A Simple and Efficient Method for Transesterification of β-Keto Esters Catalyzed by Cesium Fluoride
Publikationsverlauf
Publikationsdatum:
23. Januar 2008 (online)
Abstract
Cesium fluoride is found to be an efficient and reusable catalyst for the transesterification of β-keto esters with various alcohols in good to high yields.
Key words
alcohols - β-keto esters - catalysis - cesium fluoride - transesterifications
- For reviews, see:
-
1a
Otera J. Chem. Rev. 1993, 93: 1449 -
1b
Otera J. Esterification Methods, Reactions, and Applications Wiley-VCH; Weinheim: 2003. - 2
Taber DF.Amedio JC.Patel YK. J. Org. Chem. 1985, 50: 3618 - 3
Yadav JS.Reddy BVS.Krishna AD.Reddy CS.Narsaiah AV. J. Mol. Catal. A: Chem. 2007, 261: 93 -
4a
Otera J.Yano T.Kawabata A.Nozaki H. Tetrahedron Lett. 1986, 27: 2383 -
4b
Otera J.Dan-oh N.Nozaki H. J. Org. Chem. 1991, 56: 5307 - 5
Bandgar BP.Uppalla LS.Sadavarte VS. Synlett 2001, 1715 - For recent leading references, see:
-
6a I2:
Chavan SP.Kale RR.Shivasankar K.Chandake SI.Benjamin SB. Synthesis 2003, 2695 -
6b 3-Nitrobenzeneboronic acid:
Tale RH.Sagar AD.Santan HD.Adude RN. Synlett 2006, 415 -
6c Hexamethylenetetramine:
Ribeiro RS.de Souza ROMA.Vasconcellos MLAA.Oliveira BL.Ferreira LC.Aguiar LCS. Synthesis 2007, 61 ; and references cited therein - 7
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; Oxford: 1998. - 8
Chavan SP.Subbarao YT.Dantale SW.Sivappa R. Synth. Commun. 2001, 31: 289 - 9
Hagiwara H.Koseki A.Isobe K.Shimizu K.Hoshi T.Suzuki T. Synlett 2004, 2188 -
10a
Bandgar BP.Uppalla LS.Sadavarte VS. Green Chem. 2001, 3: 39 -
10b
da Silva FC.Ferreira VF.Rianelli RS.Perreira WC. Tetrahedron Lett. 2002, 43: 1165 -
10c
Jin T.Zhang S.Li T. Green Chem. 2002, 4: 32 - 11
De Sairre MI.Bronze-Uhle ES.Donate PM. Tetrahedron Lett. 2005, 46: 2705 - For recent leading references, see:
-
12a LiClO4:
Bandgar BP.Sadavarte VS.Uppalla LS. Synlett 2001, 1338 -
12b NaBO3:
Bandgar BP.Sadavarte VS.Uppalla LS. Chem. Lett. 2001, 30: 894 -
12c FeSO4:
Bandgar BP.Sadavarte VS.Uppalla LS. Synth. Commun. 2001, 31: 2063 - Zn:
-
12d
Chavan SP.Shivasankar K.Sivappa R.Kale R. Tetrahedron Lett. 2002, 43: 8583 -
12e
Bandgar BP.Sadavarte VS.Uppalla LS. J. Chem. Res., Synop. 2001, 16 -
12f ZnSO4:
Bandgar BP.Pandit SS.Uppalla LS. Org. Prep. Proced. Int. 2003, 35: 219 -
12g Polymer-supported lipase:
Cordova A.Janda KD. J. Org. Chem. 2001, 66: 1906 -
12h Yttria-zirconia:
Kumar P.Pandey RK. Synlett 2000, 251 -
13a
Sato T.Yoshimatsu K.Otera J. Synlett 1995, 845 -
13b
Sato T.Otera J. Synlett 1995, 336 -
13c
Sato T.Otera J. J. Org. Chem. 1995, 60: 2627 - Transesterification of β-keto esters with allylic alcohols is rather difficult as it is offset by facile decarboxylative rearrangement:
-
16a
Carrol MF. J. Chem. Soc. 1940, 704 -
16b
Kimel W.Cope AC. J. Am. Chem. Soc. 1943, 65: 1992 - 17 Conventional acid- and base-catalyzed transesterification of β-keto esters with propargylic alcohols provided in most cases low yields of the products:
Mottet C.Hamelin O.Garavel G.Depres J.-P.Greene AE. J. Org. Chem. 1999, 64: 1380 ; and references cited therein - 18 Cesium fluoride promoted desilylation of tert-butyldimethylsilyl ethers was reported:
Cirillo PF.Panek JS. J. Org. Chem. 1990, 55: 6071
References and Notes
To the best of our knowledge, there is only one successful report4 on the use of this type compound in the transesterification process.
15CsF was the best catalyst among the cesium salts examined under the identical conditions: CsCl (1%), CsBr (2%), CsI (2%).
19Transesterification of normal esters proceeded under similar reaction conditions. The details of this result will be communicated later.
20Typical Procedure (Table 1, entry 1): In a 65-mL test tube (2.0 × 19 cm) fitted with a Drierite drying tube, a vigorously stirred mixture of methyl acetoacetate (581 mg, 5.0 mmol), 1-octanol (846 mg, 6.5 mmol) and CsF21 (76 mg, 0.5 mmol) in commercial toluene without any purification (10 mL) was heated so that the toluene refluxed halfway up the tube (130-135 °C, bath temperature) for 18 h.22 After toluene had been decanted, CsF was washed with Et2O (5 mL). The combined organic layer was evaporated under reduced pressure. The residue was chromatographed on silica gel (5% EtOAc-hexane) to afford octyl acetoacetate (997 mg, 93%).23 CsF remained intact and was reused for the subsequent reaction.
21Purchased from Mitsuwa Chemicals Co., Ltd.
22The equilibrium was shifted due to the loss of the relatively volatile methyl, ethyl or isopropyl alcohol from the reaction mixture.
23Selected spectroscopic data:
Octyl 2,2-Dimethyl-3-oxobutyrate: 1H NMR (CDCl3): δ = 0.88 (t, J = 7.5 Hz, 3 H), 1.22-1.66 (m, 12 H), 1.36 (s, 6 H), 2.16 (s, 3 H), 4.12 (t, J = 7.0 Hz, 2 H). 13C NMR (CDCl3): δ = 13.9, 21.7, 22.5, 25.5, 25.7, 28.3, 29.0, 31.6, 55.6, 65.3, 173.5, 205.6.
2-Heptynyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.91 (t, J = 7.5 Hz, 3 H), 0.93 (t, J = 7.5 Hz, 3 H), 1.36-1.44 (m, 2 H), 1.46-1.53 (m, 2 H), 1.59-1.67 (m, 2 H), 2.22 (tt, J = 2.5, 7.5 Hz, 2 H), 2.53 (t, J = 7.5 Hz, 2 H), 3.47 (s, 2 H), 4.72 (t, J = 2.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 18.3, 21.8, 30.3, 44.7, 48.9, 53.5, 73.3, 88.0, 166.5, 202.1.
8-Oxiranyloctyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.5 Hz, 3 H), 1.25-1.69 (m, 16 H), 2.47 (dd, J = 3.5, 5.0 Hz, 1 H), 2.52 (t, J = 7.5 Hz, 2 H), 2.75 (app t, J = 4.5 Hz, 1 H), 2.88-2.94 (m, 1 H), 3.43 (s, 2 H), 4.13 (t, J = 6.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 25.6, 25.8, 28.3, 28.9, 29.1, 29.2, 32.3, 44.7, 46.9, 49.1, 52.2, 65.3, 167.2, 202.6.
2-(Dimethylamino)ethyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.0 Hz, 3 H), 1.58-1.68 (m, 2 H), 2.28 (s, 6 H), 2.52 (t, J = 7.0 Hz, 2 H), 2.58 (t, J = 5.5 Hz, 2 H), 3.47 (s, 2 H), 4.24 (t, J = 5.5 Hz, 2 H). 13C NMR (CDCl3): δ = 13.3, 16.7, 44.7, 45.4, 49.0, 57.4, 62.6, 167.1, 202.6.
6-Chlorohexyl 3-Oxohexanoate: 1H NMR (CDCl3): δ = 0.93 (t, J = 7.5 Hz, 3 H), 1.35-1.82 (m, 10 H), 2.52 (t, J = 7.5 Hz, 2 H), 3.43 (s, 2 H), 3.54 (t, J = 6.5 Hz, 2 H), 4.14 (t, J = 7.0 Hz, 2 H). 13C NMR (CDCl3): δ = 13.4, 16.8, 25.0, 26.3, 28.2, 32.2, 44.7, 49.1, 65.0, 167.1, 202.6.