Synlett 2008(3): 394-398  
DOI: 10.1055/s-2008-1032059
LETTER
© Georg Thieme Verlag Stuttgart · New York

The Development of an Asymmetric Nicholas Reaction Using Chiral Phosphoramidite Ligands

Natalie Ljungdahl, Núria Parera Pera, Kristian H. O. Andersson, Nina Kann*
Organic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
Fax: +46(31)7723657; e-Mail: kann@chalmers.se;
Further Information

Publication History

Received 15 August 2007
Publication Date:
16 January 2008 (online)

Abstract

An asymmetric version of the Nicholas reaction involving the use of chiral phosphoramidite ligands has been developed. Treatment of a cobalt carbonyl complexed propargylic alcohol with two equivalents of the chiral ligand, followed by reaction with a silyl enol ether in the presence of a Lewis acid, afforded, after decomplexation, the desired product in up to 74% ee for the carbon-carbon bond forming step.

    References and Notes

  • For reviews on the Nicholas reaction, see:
  • 1a Nicholas KM. Acc. Chem. Res.  1987,  20:  207 
  • 1b Green JR. Curr. Org. Chem.  2001,  5:  809 
  • 1c Müller TJJ. Eur. J. Org. Chem.  2001,  2021 
  • 1d Teobald BJ. Tetrahedron  2002,  58:  4133 
  • 1e Omae I. Appl. Organomet. Chem.  2007,  21:  318 
  • 2 Quintal MM. Closser KD. Shea KM. Org. Lett.  2004,  6:  4949 
  • 3 Crisóstomo FRP. Carrillo R. Martín T. Martín VS. Tetrahedron Lett.  2005,  46:  2829 
  • 4a Cassel JA. Leue S. Gachkova NI. Kann NC. J. Org. Chem.  2002,  67:  9460 
  • 4b Gachkova N. Cassel J. Leue S. Kann N. J. Comb. Chem.  2005,  7:  449 
  • 5 Álvaro E. de la Torre MC. Sierra MA. Chem. Eur. J.  2006,  12:  6403 
  • 6 For a recent review, see: Díaz DD. Betancourt JM. Martín VS. Synlett  2007,  343 
  • 7a Sherry BD. Radosevich AT. Toste FD. J. Am. Chem. Soc.  2003,  125:  6076 
  • 7b Luzung MR. Toste FD. J. Am. Chem. Soc.  2003,  125:  15760 
  • 7c Kennedy-Smith JJ. Young L. Toste DF. Org. Lett.  2004,  6:  1325 
  • 8 For a recent review, see: Nishibayashi Y. Uemura S. Curr. Org. Chem.  2006,  10:  135 
  • 9a Nishibayashi Y. Imajima H. Onodera G. Uemura S. Organometallics  2005,  24:  4106 
  • 9b Inada Y. Nishibayashi Y. Uemura S. Angew. Chem. Int. Ed.  2005,  44:  7715 
  • 9c Matsuzawa H. Miyake Y. Nishibayashi Y. Angew. Chem. Int. Ed.  2007,  46:  6488 
  • 10a Jacobi PA. Murphree S. Rupprecht F. Zheng W. J. Org. Chem.  1996,  61:  2413 
  • 10b Jacobi PA. Herradura P. Tetrahedron Lett.  1996,  37:  8297 
  • 10c Jacobi PA. Herradura P. Can. J. Chem.  2001,  79:  1727 
  • For some examples, see:
  • 11a Muehldorf AV. Guzman-Perez A. Kluge AF. Tetrahedron Lett.  1994,  35:  8755 
  • 11b Montaña AM. Cano M. Tetrahedron  2002,  58:  933 
  • 11c Díaz DD. Betancourt JM. Crisóstomo FRP. Martín T. Martín VS. Tetrahedron  2002,  58:  1913 
  • 12a Bradley DH. Khan MA. Nicholas KM. Organometallics  1989,  8:  554 
  • 12b Caffyn AJM. Nicholas KM. J. Am. Chem. Soc.  1993,  115:  6438 
  • 13 Bradley DH. Khan MA. Nicholas KM. Organometallics  1992,  11:  2598 
  • 14 Kuhn O. Rau D. Mayr H. J. Am. Chem. Soc.  1998,  120:  900 
  • For some examples, see:
  • 15a Fuji K. Kinoshita N. Tanaka K. Kawabata T. Chem. Commun.  1999,  2289 
  • 15b Pretot R. Pfaltz A. Angew. Chem. Int. Ed.  1998,  37:  323 
  • 16a de Vries AHM. Meetsma A. Feringa BL. Angew. Chem., Int. Ed. Engl.  1996,  35:  2374 
  • 16b Feringa BL. Acc. Chem. Res.  2000,  33:  346 
  • 17a van den Berg M. Minnaard AJ. Schudde EP. van Esch J. de Vries AHM. de Vries J. Feringa BL. J. Am. Chem. Soc.  2000,  122:  11539 
  • 17b van den Berg M. Minnaard AJ. Haak RM. Leeman M. Schudde EP. Meetsma A. Feringa BL. de Vries AHM. Maljaars CEP. Willans CE. Hyett D. Boogers JAF. Henderickx HJW. de Vries JG. Adv. Synth. Catal.  2003,  345:  308 
  • 18a Feringa BL. Pineschi M. Arnold LA. Imbos R. de Vries AHM. Angew. Chem., Int. Ed. Engl.  1997,  36:  2620 
  • 18b Alexakis A. Benham C. Rosset S. Humam M. J. Am. Chem. Soc.  2002,  124:  5262 
  • 19a Duursma A. Lefort L. Boogers JAF. de Vries AHM. de Vries JG. Minnaard AJ. Feringa BL. Org. Biomol. Chem.  2004,  2:  1682 
  • 19b de Vries JG. Lefort L. Chem. Eur. J.  2006,  12:  4722 
  • 20 Konya D. Robert F. Gimbert Y. Greene AE. Tetrahedron Lett.  2004,  45:  6975 
  • 21 Achard M. Tenaglia A. Buono G. Org. Lett.  2005,  7:  2353 
  • 22 Bernsmann H. van den Berg M. Hoen R. Minnaard AJ. Mehler G. Reetz MT. de Vries JG. Feringa BL. J. Org. Chem.  2005,  70:  943 
  • 23a

    For ligand 2a, see ref. 19a.

  • 23b For ligand 2d, see: Lefort L. Boogers JAF. de Vries AHM. de Vries JG. Org. Lett.  2004,  6:  1733 
  • 23c For ligand 2e, see: Panella L. Aleixandre AM. Kruidhof GJ. Robertus J. Feringa BL. de Vries JG. Minnaard AJ. J. Org. Chem.  2006,  71:  2026 
  • 23d For ligand 2f, see: Boiteau J.-G. Imbos R. Minnaard AJ. Feringa BL. Org. Lett.  2003,  5:  681 
  • 23e

    For ligand 2g, see ref. 19b.

  • 23f

    For ligands 2h and 2i, see ref. 21.

  • 23g

    For ligands 2j and 2k, see ref. 16a.

  • 23h For ligands 2l and 2m, see: Peña D. Minnaard AJ. de Vries AHM. de Vries J. Feringa BL. Org. Lett.  2003,  5:  475 
  • 23i For ligand 2n, see: Imbos R. Brilman MHG. Pineschi M. Feringa BL. Org. Lett.  1999,  1:  623 
  • 25 Nicholas KM. Pettit R. J. Organomet. Chem.  1972,  44:  C21 
  • 27a

    General Procedure for the Asymmetric Nicholas Reaction: The phosphoromidite-cobalt-alkyne complex (0.25 mmol) was dissolved in CH2Cl2 (1 mL) and cooled to -30 °C. BF3·OEt2 (47.5 µL, 0.375 mmol,) was added, followed by the dropwise addition of the nucleophile (0.5 mmol). After 16 h, the reaction was quenched with Et3N (69.7 µL, 0.5 mmol), and the solvent was removed in vacuo. Decomplexation was effected by dissolving the residue in THF-H2O (9:1), cooling to -10 °C, followed by the portionwise addition of a 0.18 M solution of cerium ammonium nitrate in THF-H2O (9:1) until the dark red solution turned orange-yellow (the amount of CAN solution used corresponded to approximately 5 equiv in most cases, and up to 10 equiv in a few cases). The reaction mixture was diluted with brine (1 mL) and extracted with Et2O (3 × 2 mL). The combined organic phases were dried over MgSO4 and concentrated. The crude product was purified by flash chromatography, eluting with 5-10% EtOAc in PE. The enantioselectivity was measured by HPLC on both the crude and the pure product, using a Daicel Chiralpak AD-H column (hexane-i-PrOH, 95:5).

  • 27b For compound 5, see: Asao N. Ohishi T. Sato K. Yamamoto Y. Tetrahedron  2002,  58:  8195 
  • 27c

    For compounds 7, 9, 10 and 11, see ref. 4b.

  • 28 Yang D. Chen F. Dong Z.-M. Zhang D.-W. J. Org. Chem.  2004,  69:  2221 
  • 29 Hoffman RV. Kim H.-O. J. Org. Chem.  1995,  60:  5107 
  • 32 Castro J. Moyano A. Pericás MA. Riera A. Maestro MA. Mahía J. Organometallics  2000,  19:  1704 
24

General Procedure for the Parallel Synthesis of the Ligands:21 The amine (0.25 mmol) was added to a carousel tube, followed by Et3N (0.25 mmol). The tube was sealed, flushed with argon and cooled to -40 °C. A 0.25 M stock solution of BINOL-chlorophosphite (1 mL) in toluene was added, and the reaction was left to warm overnight. The reaction mixture was rapidly filtered through a small plug of silica gel into a new sealed and degassed carousel tube. The filtrate was washed with toluene (1 mL), and the combined toluene solutions of the ligand were used directly in the next step.Spectral Data for Crude 2b: 1H NMR (400 MHz, CDCl3): δ = 7.80-8.10 (m, 4 H), 7.20-7.60 (m, 12 H). 13C NMR (100 MHz, CDCl3): δ = 145.7, 144.9, 132.0, 131.6, 131.5, 128.7, 128.6, 127.3, 127.2, 127.0 (J = 2.3 Hz), 126.2, 126.1, 121.0, 120.2 (J = 38 Hz). IR: 1298, 1224, 966, 929, 881, 816, 752 cm-1.Spectral Data for Crude 2c: 1H NMR (400 MHz, CDCl3): δ = 7.85-8.00 (m, 4 H), 7.25-7.60 (m, 14 H). 13C NMR (100 MHz, CDCl3): δ = 147.4, 147.1, 132.9, 132.6, 131.8, 131.4, 130.6, 130.0, 128.6 (d, J = 7.6 Hz), 127.1 (d, J = 9.9 Hz), 126.5, 126.4, 125.4, 125.1, 124.5, 123.2, 122.0, 121.8. IR: 1225, 1198, 884, 820 cm-1.

26

General Procedure for the Formation of the Intermediate Cobalt Complexes: The propargylic alcohol (1-butyn-3-ol, 6 or 8) was dissolved in CH2Cl2 in a two-necked flask under argon. An equimolar amount of dicobalt octacarbonyl, dissolved in CH2Cl2, was added. The reaction was protected from light by wrapping the flask in foil, and the solution was stirred at r.t. for 3 h. The mixture was filtered through a short plug of silica, eluting with CH2Cl2, and concentrated, affording the complex as a dark red oil. The ligand (0.25 mmol) was added to a Radleys carousel tube and dissolved in toluene (1 mL). The tube was sealed and flushed with argon. A 0.125 M stock solution of the alkyne-cobalt complex (1 mL) in toluene was added to the tube. The reaction mixture was heated at 50 °C overnight. The solvent was removed in vacuo, and the crude phosphoramidite-cobalt-alkyne complex thus formed was used directly in the Nicholas reaction in the same reaction tube.

30

General Procedure for the Preparation of the Precursor Propargylic Alcohols, Exemplified by 6: 4-Iodoaceto-phenone (500 mg, 2.03 mmol), Pd(PPh3)4 (23.5 mg, 0.020 mmol) and CuI (7.7 mg, 0.040 mmol) were added to a 5-mL microwave reaction tube flushed with argon. Freshly distilled Et3N (2 mL) and anhyd DMF (1 mL) were added, followed by 1-octyn-3-ol (355 µL, 2.43 mmol). The reaction was heated at 100 ºC for 10 min using a Biotage Initiator microwave reactor. The reaction mixture was then filtered through a pad of Celite, diluted with Et2O and washed with brine. Drying over MgSO4 followed by rotary evaporation afforded 6 (390 mg) as an amber-yellow oil. For larger-scale reactions, the reaction was run with conventional heating at 40 ºC for 16 h. Data for 6: 1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 8.4 Hz, 2 H), 7.48 (d, J = 8.4 Hz, 2 H), 4.56-4.64 (m, 1 H), 2.59 (s, 3 H), 1.74-1.84 (m, 2 H), 1.30-1.60 (m, 6 H), 0.89 (t, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 197.5, 136.4, 131.9, 128.3, 127.8, 93.8, 84.1, 63.1, 37.8, 31.6, 26.7, 25.0, 22.7, 14.1. IR: 3421, 2931, 2365, 2250, 1684, 1602, 1266, 909, 733 cm-1. Anal. Calcd for C16H20O2: C, 78.65; H, 8.25. Found: C, 78.53; H, 8.65. Compound 8 was prepared from 1-octyn-3-ol and 3,5-dimethyl-1-iodobenzene in the same manner. Data for 8: 1H NMR (400 MHz, CDCl3): δ = 7.07 (s, 2 H), 6.96 (s, 1 H), 4.72-4.80 (m, 1 H), 2.92 (s, 6 H), 1.94 (d, J = 5.2 Hz, 1 H), 1.55 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 138.00, 130.44, 129.56, 122.47, 90.63, 84.43, 58.95, 24.63, 21.29. Anal. Calcd for C12H14O: C, 82.72; H, 8.10. Found: C, 82.65; H, 8.03.

31

Carousel 12 Reaction Station was obtained from Radleys Discovery Technologies.