Horm Metab Res 2007; 39(11): 797-800
DOI: 10.1055/s-2007-991155
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

The Y111 H (T415C) Polymorphism in Exon 3 of the Gene Encoding Adiponectin is Uncommon in Polish Obese Patients

M. Owecki 1 , A. Miczke 2 , M. Kaczmarek 3 , J. Hoppe-Gołębiewska 3 , D. Pupek-Musialik 2 , R. Słomski 3 , W. Bryll 2 , M. Cymerys 2 , E. Nikisch 4 , J. Sowiński 1
  • 1Department of Endocrinology, Metabolism and Internal Medicine, Poznań University of Medical Sciences, Poznań, Poland
  • 2Department of Internal Diseases, Metabolic Disturbances and Hypertension, Poznań University of Medical Sciences, Poznań, Poland
  • 3Institute of Human Genetics of the Polish Academy of Sciences, Poznań, Poland
  • 4Department of Informatics and Statistics, Poznań University of Medical Sciences, Poznań, Poland
Further Information

Publication History

received 03.01.2007

accepted 10.04.2007

Publication Date:
09 November 2007 (online)

Abstract

The genetic background of obesity is under research. Obesity-related phenotype candidate genes include the gene encoding adiponectin (AdipoQ). In this study, exon 3 of the adiponectin gene was screened for the Y111 H (Tyr111His, or T415C, rs17366743) polymorphism, and adiponectin serum concentrations were measured in 206 obese subjects (110 women and 96 men, aged 50.5±16.9 years). Their BMI, % of body fat, plasma glucose, insulin, and glycosylated hemoglobin were measured. Adiponectin was determined by enzyme-linked immunosorbent assay. Genomic DNA was extracted from peripheral blood leukocytes. A fragment of exon 3 of the adiponectin gene was amplified in PCR and screened for the Y111 H polymorphism in SSCP analysis. Genetic screening revealed a different SSCP pattern in 2 subjects. Subsequent genotyping disclosed the TC genotype in both subjects, resulting in Y111 H heterozygote variant frequency of 0.01 in the whole cohort. Other results for SNP (single nucleotide polymorphism) positive and negative subjects were as follows, respectively: BMI (kg/m2) 39.95±9.83 vs. 38.12±8.56; waist circumference (cm) 122±18.4 vs.115±16; glucose (mmol/l) 7.51±1.86 vs. 5.56±0.74; HbA1c (%) 7.55±1.86 vs. 6.58±1.36; body fat (%) 51±2 vs. 44±10; plasma insulin (mU/l) 28.92±16.50 vs. 37.59±47.34; adiponectin (ng/ml) 1301±15.8 vs. 5682±4156. Due to a proportion of 2 vs. 204, statistical calculations were not possible. The Y111 H adiponectin gene variant is uncommon in Polish obese subjects. Although we observed low adiponectin concentrations in Y111 H SNP heterozygote carriers, this finding was not confirmed by statistics.

References

  • 1 Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26746-26749
  • 2 Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 3 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose most abundant gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 4 Nakano Y, Tobe T, Choi-Miura N, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma.  J Biochem. 1996;  120 803-812
  • 5 Stefan N, Stumvoll M. Adiponectin - its role in metabolism and beyond.  Horm Metab Res. 2002;  34 469-474
  • 6 Berg AH, Combs TP, Scherer PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism.  Trends Endocrinol Metab. 2002;  13 84-89
  • 7 Pellme F, Smith U, Funahashi T, Matsuzawa Y, Brekke H, Wiklund O, Taskinen MR, Jansson PA. Circulating adiponectin levels are reduced in nonobese but insulin-resistant first-degree relatives of type 2 diabetic patients.  Diabetes. 2003;  52 1182-1186
  • 8 Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes.  J Clin Endocrinol Metab. 2005;  90 4542-4548
  • 9 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 10 Thamer C, Haap M, Heller E, Joel L, Braun S, Tschritter O, Haring H, Fritsche A. Beta cell function, insulin resistance and plasma adiponectin concentrations are predictors for the change of postprandial glucose in non-diabetic subjects at risk for type 2 diabetes.  Horm Metab Res. 2006;  38 178-182
  • 11 Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor- expression.  Diabetes. 2003;  52 1779-1785
  • 12 Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, Yannakoulia M, Chrousos GP, Sidossis LS. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls.  Metabolism. 2005;  54 1472-1479
  • 13 Kaser S, Moschen A, Kaser A, Ludwiczek O, Ebenbichler CF, Vogel W, Jaschke W, Patsch JR, Tilg H. Circulating adiponectin reflects severity of liver disease but not insulin sensitivity in liver cirrhosis.  J Intern Med. 2005;  258 274-280
  • 14 Bacha F, Saad R, Gungor N, Arslanian SA. Does adiponectin explain the lower insulin sensitivity and hyperinsulinemia of African-American children?.  Pediatr Diabetes. 2005;  6 100-102
  • 15 Vozarova B, Stefan N, Lindsay RS, Krakoff J, Knowler WC, Funahashi T, Matsuzawa Y, Stumvoll M, Weyer C, Tataranni PA. Low plasma adiponectin concentrations do not predict weight gain in humans.  Diabetes. 2002;  51 2964-2967
  • 16 Staiger K, Stefan N, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, Machicao F, Kellerer M, Stumvoll M, Fritsche A, Haring HU. Adiponectin is functionally active in human islets but does not affect insulin secretory function or beta-cell lipoapoptosis.  J Clin Endocrinol Metab. 2005;  90 6707-6713
  • 17 Ferris WF, Naran NH, Crowther NJ, Rheeder P, Merwe L van der, Chetty N. The relationship between insulin sensitivity and serum adiponectin levels in three population groups.  Horm Metab Res. 2005;  37 695-701
  • 18 Abbasi F, Lamendola C, MacLaughlin T, Hayden J, Reaven GM, Reaven PD. Plasma adiponectin concentrations do not increase in association with moderate weight loss in insulin-resistant, obese women.  Metabolism. 2004;  53 280-283
  • 19 Vionnet N, Hani El-H, Dupont S, Gallina S, Francke S, Dotte S, Matos F De, Durand E, Lepretre F, Lecoeur C, Gallina P, Zekiri L, Dina C, Froguel P. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24.  Am J Hum Genet. 2000;  67 1470-1480
  • 20 Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG, Marks JA, Krakower GR, Jacob HJ, Weber J, Martin L, Blangero J, Comuzzie AG. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome.  Proc Natl Acad Sci USA. 2000;  97 14478-14483
  • 21 Vozarova de Courten B, Hanson RL, Funahashi T, Lindsay RS, Matsuzawa Y, Tanaka S, Thameem F, Gruber JD, Froguel P, Wolford JK. Common polymorphisms in the adiponectin gene ACDC are not associated with diabetes in Pima Indians.  Diabetes. 2005;  54 284-289
  • 22 Schäffler A, Barth N, Palitzsch K-D, Drobnik W, Schölmerich J, Schmitz G. Mutation analysis of the human adipocyte-specific apM-1 gene.  Eur J Clin Invest. 2000;  30 879-887
  • 23 Zietz B, Barth N, Schölmerich J, Schmitz G, Schäffler A. Gly15Gly polymorphism within the human adipocyte-specific apM-1gene but not Tyr111His polymorphism is associated with higher levels of cholesterol and LDL-cholesterol in Caucasian patients with type 2 diabetes.  Exp Clin Endocrinol Diabetes. 2001;  109 320-325
  • 24 Schäffler A, Herfarth H, Paul G, Ehling A, Müller-Ladner U, Schölmerich J, Zietz B. Identification of influencing variables on adiponectin serum levels in diabetes mellitus type 1 and type 2.  Exp Clin Endocrinol Diabetes. 2004;  112 383-389
  • 25 Ukkola O, Ravussin E, Jacobson P, Sjöström L, Bouchard C. Mutations in the adiponectin gene in lean and obese subjects from the Swedish obese subjects cohort.  Metabolism. 2003;  52 881-884
  • 26 Ukkola O, Santaniemi M, Rankinen T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bergman R, Kesaniemi YA, Bouchard C. Adiponectin polymorphisms, adiposity and insulin metabolism: HERITAGE family study and Oulu diabetic study.  Ann Med. 2005;  37 141-150
  • 27 Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain B, Kadowaki T, Froguel P. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians.  Hum Mol Genet. 2002;  11 2607-2614
  • 28 Østergård T, Ek J, Hamid Y, Saltin B, Pedersen OB, Hansen T, Schmitz O. Influence of the PPAR-gamma2 Pro12Ala and ACE I/D polymorphisms on insulin sensitivity and training effects in healthy offspring of type 2 diabetic subjects.  Horm Metab Res. 2005;  37 99-105
  • 29 Gouni-Berthold I, Giannakidou E, Faust M, Berthold HK, Krone W. The K121Q polymorphism of the plasma cell glycoprotein-1 gene is not associated with diabetes mellitus type 2 in German Caucasians.  Horm Metab Res. 2006;  38 524-529
  • 30 Li Y, Fisher E, Klapper M, Boeing H, Pfeiffer A, Hampe J, Schreiber S, Burwinkel B, Schrezenmeir J, Döring F. Association between functional FABP2 promoter haplotype and type 2 diabetes.  Horm Metab Res. 2006;  38 300-307
  • 31 Fisher E, Li Y, Burwinkel B, Kühr V, Hoffmann K, Möhlig M, Spranger J, Pfeiffer A, Boeing H, Schrezenmeir J, Döring F. Preliminary evidence of FABP2 A54 T polymorphism associated with reduced risk of type 2 diabetes and obesity in women from a German cohort.  Horm Metab Res. 2006;  38 341-345
  • 32 Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.  Diabetes. 2002;  51 536-540
  • 33 Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machicao F, Haring H. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes.  Diabetes. 2002;  51 37-41
  • 34 Menzaghi C, Ercolino T, Di Paola R, Berg AH, Warram JH, Scherer PE, Trischitta V, Doria A. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome.  Diabetes. 2002;  51 2306-2312

Correspondence

M. OweckiMD 

Department of Endocrinology

Metabolism and Internal Medicine

ul. Przybyszewskiego 49

60-355 Poznań

Poland

Phone: +48/61/869 13 30

Fax: +48/61/869 16 82

Email: mowecki@ump.edu.pl