References and Notes
1 For a review of the earlier work on haplophytine, see: Saxton JE.
Alkaloids
1965,
8:
673
2a
Rogers EF.
Snyder HR.
Fischer RF.
J. Am. Chem. Soc.
1952,
74:
1987
2b
Snyder HR.
Fischer RF.
Walker JF.
Els HE.
Nussberger GA.
J. Am. Chem. Soc.
1954,
76:
2819
2c
Snyder HR.
Fischer RF.
Walker JF.
Els HE.
Nussberger GA.
J. Am. Chem. Soc.
1954,
76:
4601
2d
Synder HR.
Strohmayer HF.
Mooney RA.
J. Am. Chem. Soc.
1958,
80:
3708
3
Yates P.
MacLachlan FN.
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Cava MP.
Behforouz M.
Lakshmikantham MV.
Zeigler W.
J. Am. Chem. Soc.
1973,
95:
7842
4
Cheng P.-T.
Nyburg SC.
MacLachlan FN.
Yates P.
Can. J. Chem.
1976,
54:
726
5a
Cava MP.
Talapatra SK.
Nomura K.
Weisbach JA.
Douglas B.
Shoop EC.
Chem. Ind. (London)
1963,
1242
5b
Cava MP.
Talapatra SK.
Yates P.
Rosenberger M.
Szabo AG.
Douglas B.
Raffauf RF.
Shoop EC.
Weisbach JA.
Chem. Ind. (London)
1963,
1875
5c
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Yates P.
Zacharias DE.
Jeffrey GA.
Douglas B.
Kirkpatrick JL.
Weisbach JA.
J. Am. Chem. Soc.
1967,
89:
3061
For synthetic studies, see:
6a
Yates P.
Schwartz DA.
Can. J. Chem.
1983,
61:
509
6b
Schwartz DA.
Yates P.
Can. J. Chem.
1983,
61:
1126
6c
Rege PD.
Tian Y.
Corey EJ.
Org. Lett.
2006,
8:
3117
7 For a similar approach of this work, see: Nicolaou KC.
Majumder U.
Roche SP.
Chen DYK.
Angew. Chem. Int. Ed.
2007,
46:
4715
8
He F.
Bo Y.
Altom JD.
Corey EJ.
J. Am. Chem. Soc.
1999,
121:
6771
9a
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Org. Lett.
2003,
5:
1891
9b
Sumi S.
Matsumoto K.
Tokuyama H.
Fukuyama T.
Tetrahedron
2003,
59:
8571
10
Mejia-Oneto JM.
Padwa A.
Org. Lett.
2006,
8:
3275
11
Marino JP.
Cao GF.
Tetrahedron Lett.
2006,
47:
7711
12a
Matsumoto K.
PhD Dissertation
University of Tokyo;
Japan:
2006.
12b The preliminary results of this work were communicated in the Pharmaceutical Society of Japan, the 33th Symposium on Progress in Organic Reaction and Syntheses - Applications in the Life Science on November 7-8, 2005 (Book of Abstracts, ISSN 0919-2123). The approach described in this paper and a similar approach reported by K. C. Nicolaou and co-workers (ref. 7) were developed independently.
13
Yates P.
MacLachlan FN.
Rae ID.
Rosenberger M.
Szabo AG.
Willis CR.
Cava MP.
Behforouz M.
Lakshmikantham MV.
Zeigler W.
J. Am. Chem. Soc.
1973,
95:
7842
14
Shimizu M.
Ishikawa M.
Komoda Y.
Matsubara Y.
Nakajima T.
Chem. Pharm. Bull.
1982,
30:
4529
15a
Kan T.
Fukuyama T.
J. Synth. Org. Chem., Jpn.
2001,
59:
779
15b
Kurosawa W.
Kan T.
Fukuyama T.
Org. Synth.
2002,
79:
186
15c
Kan T.
Fukuyama T.
Chem. Commun.
2004,
353
16 Major product 17: mp 220-222 °C (dec.); IR (film): 3419, 3332, 2937, 1732, 1666, 1610, 1516, 1481, 1400, 912, 758 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.28 (d, J = 8.4 Hz, 1 H), 7.20 (t, J = 8.4 Hz, 1 H), 7.14 (d, J = 8.4 Hz, 1 H), 6.98 (t, J = 8.4 Hz, 1 H), 6.87 (d, J = 7.6 Hz, 1 H), 6.38 (d, J = 8.0 Hz, 1 H), 3.59 (s, 3 H), 3.18-3.04 (m, 3 H), 2.84 (s, 6 H), 2.82-2.77 (m, 1 H), 2.69-2.60 (m, 2 H), 2.52-2.44 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 204.8, 169.1, 149.3, 143.0, 141.9, 139.9, 135.2, 127.9, 125.7, 124.4, 123.8, 121.3, 115.7, 104.7, 93.5, 64.0, 59.1, 58.4, 45.6, 42.1, 33.7, 31.3, 30.2. HRMS-FAB: m/z calcd for C23H25N3O4 [M + H]+: 408.1923; found: 408.1918.
17 Compound 25: IR (film): 2944, 1706, 1681, 1601, 1390, 1336, 1158, 912, 756 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 7.2 Hz, 1 H), 7.35-7.24 (m, 13 H), 7.08 (d, J = 8.4 Hz, 1 H), 7.03 (t, J = 8.4 Hz, 1 H), 5.11 (br s, 4 H), 3.65-3.55 (m, 2 H), 3.62 (br s, 3 H), 3.59 (br s, 3 H), 3.44-3.35 (m, 1 H), 3.27-3.20 (m, 1 H), 3.20 (s, 3 H), 2.99 (dt, J = 7.2, 15.6 Hz, 1 H), 2.76 (dd, J = 3.6, 15.6 Hz, 1 H), 2.46 (dt, J = 5.2, 15.6 Hz, 1 H), 1.82 (dt, J = 7.2, 14.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 155.9, 152.6, 150.2, 140.2, 137.1, 136.9, 136.4, 135.9, 133.2, 128.8, 128.7, 128.6, 128.5, 128.1, 124.6, 124.5, 123.2, 122.0, 115.9, 67.7, 67.4, 60.5, 60.1, 49.3, 41.9, 37.9, 33.4, 21.3, 14.5. HRMS-FAB: m/z calcd for C39H37N3O7: 659.2632; found: 659.2630.
18
Oxidative Rearrangement
To a solution of 25 (100 mg, 0.152 mmol) in CH2Cl2 (1.5 mL) was added NaHCO3 (38.2 mg, 0.455 mmol) and MCPBA (40.2 mg, 65% purity, 0.152 mmol) at 0 °C under an argon atmosphere. After stirring for 2 h at the same temperature, the reaction mixture was quenched with sat. Na2SO3 and stirred for 10 min. Then to the two-phase mixture was added CH2Cl2, and the organic layer was separated. The organic layer was washed with sat. NaHCO3, brine, and dried over Na2SO4. Filtration and concentration on a rotary evaporator afforded a crude product. The crude product was purified by flash column chromatography on silica gel (neutral; 30-40% EtOAc in hexane, gradient elution) to give 26 (84.1 mg, 82%). IR (film): 2944, 1709, 1458, 1394, 1316, 1159, 912, 756 cm-1. 1H NMR (400 MHz, CDCl3, mixture of rotamers): δ = 8.29 (d, J = 8.4 Hz, 0.5 H), 8.08 (d, J = 8.0 Hz, 0.5 H), 7.36-6.95 (m, 14 H), 6.80 (dd, J = 7.2, 11.2 Hz, 1 H), 5.15 (br s, 2 H), 5.12 (s, 2 H), 3.83-3.76 (m, 0.5 H), 3.68-3.52 (m, 1.5 H), 3.68 (br s, 1.5 H), 3.61 (br s, 1.5 H), 3.41-3.29 (m, 1 H), 3.25 (s, 3 H), 2.99 (br s, 1 H), 2.88-2.76 (m, 1 H), 2.80 (br s, 3 H), 2.66-2.43 (m, 1.5 H), 2.25-2.05 (m, 1 H), 1.95-1.86 (m, 0.5 H). 13C NMR (100 MHz, CDCl3, doubling due to rotamers): δ = 195.2, 171.9, 168.0, 155.4, 154.6, 149.4, 149.2, 140.2, 136.3, 136.2, 135.3, 135.1, 134.8, 132.8, 130.5, 128.4, 128.3, 128.0, 127.8, 127.2, 125.3, 123.9, 122.9, 122.2, 121.8, 120.8, 120.5, 120.2, 115.7, 81.4, 67.7, 67.6, 66.9, 59.9, 58.1, 56.4, 52.3, 46.1, 40.4, 39.3, 37.4, 36.1, 30.6, 30.3, 30.1, 21.0. HRMS-FAB: m/z calcd for C39H37N3O8: 675.2581; found: 675.2578.