RSS-Feed abonnieren
DOI: 10.1055/s-2007-986669
Convenient Synthesis of 4-Methylenecyclobutenones and Their Synthetic Utility as Allenylketene Precursors
Publikationsverlauf
Publikationsdatum:
12. September 2007 (online)
Abstract
Thermal reaction of alkynyl propargyl sulfides 1 in the presence of n-BuN3 followed by moist silica gel treatment afforded 4-methylenecyclobutenones 4 in moderate yields. Photogeneration of allenylketenes 5 from 4 in the presence of amine or methanol gave 3,4-pentadienamides 6 or methyl 3,4-pentadienates 7, respectively. Similar reaction in the presence of aldimines afforded unsaturated δ-lactams 9 in good yields.
Key words
alkynyl propargyl sulfides - 4-methylenecyclobutenones - allenylketenes - [4+2]-cycloaddition - unsaturated δ-lactams
-
1a
Danheiser RL.Sard H. J. Org. Chem. 1980, 45: 4810 -
1b
Danheiser RL.Nishida A.Savariar S.Trova MP. Tetrahedron Lett. 1988, 29: 4917 -
1c
Danheiser RL.Brisbois RG.Kowalczyk JJ.Miller RF. J. Am. Chem. Soc. 1990, 112: 3093 -
1d
Loebach JL.Bennett DM.Danheiser RL. J. Org. Chem. 1998, 63: 8380 -
1e
Bennett DM.Okamoto I.Danheiser RL. Org. Lett. 1999, 1: 641 -
1f
Collomb D.Doutheau A. Tetrahedron Lett. 1997, 38: 1397 - 2
Loebach JL.Bennett DM.Danheiser RL. J. Am. Chem. Soc. 1998, 120: 9690 -
3a
Sun L.Liebeskind LS. J. Org. Chem. 1995, 60: 8194 -
3b
Krysan DJ.Gurski A.Liebskind LS. J. Am. Chem. Soc. 1992, 114: 1412 -
3c
Heedinga JM.Moore HW. J. Org. Chem. 1991, 56: 4048 -
3d
Gurski-Birchler A.Liu F.Liebskind LS. J. Org. Chem. 1994, 59: 7737 -
3e
Zhang S.Liebskind LS. J. Org. Chem. 1999, 64: 4042 -
4a
Danheiser RL.Sard H. Tetrahedron Lett. 1983, 24: 23 -
4b
Danheiser RL.Savariar S. Tetrahedron Lett. 1987, 28: 3299 -
4c
Lawlor MD.Lee TW.Danheiser RL. J. Org. Chem. 2000, 65: 4375 -
5a
Huang W.Fang D.Temple K.Tidwell TT. J. Am. Chem. Soc. 1997, 119: 2832 -
5b
Huang W.Tidwell TT. Synthesis 2000, 457 -
6a
Shimada K.Akimoto S.Itoh H.Nakamura H.Takikawa Y. Chem. Lett. 1994, 1743 -
6b
Shimada K.Akimoto S.Takikawa Y.Kabuto C. Chem. Lett. 1994, 2283 -
6c
Aoyagi S.Sugimura K.Kanno N.Watanabe D.Shimada K.Takikawa Y. Chem. Lett. 2006, 992 -
6d
Aoyagi S.Koyanagi M.Takahashi M.Shimada K.Takikawa Y. Tetrahedron Lett. 2007, 48: 1915 -
6e
Aoyagi S.Makabe M.Shimada K.Takikawa Y. Tetrahedron Lett. 2007, 48: 4639 -
6f
Koketsu M.Kanoh M.Itoh E.Ishihara H. J. Org. Chem. 2001, 66: 4099 -
9a
Huisgen R.Fisera L.Giera H.Sustmann R. J. Am. Chem. Soc. 1995, 117: 9671 -
9b
Tsai T.Chen W.Yu C.le Noble WJ.Chung W. J. Org. Chem. 1999, 64: 1099 -
9c
Huisgen R.Mloston G.Polborn K. J. Org. Chem. 1996, 61: 6570 -
10a
Mloston G.Heimgartner H. Helv. Chim. Acta 1995, 78: 1298 -
10b
Mloston G.Majchrzak A.Rutkowska M.Woznicka M.Linden A.Heimgartner H. Helv. Chim. Acta 2005, 88: 2624 - 13
Scully FE. J. Org. Chem. 1980, 45: 1515 -
14a
Aoyagi S.Hakoishi M.Suzuki M.Nakanoya Y.Shimada K.Takikawa Y. Tetrahedron Lett. 2006, 47: 7763 -
14b
Aoyagi S.Ohata S.Shimada K.Takikawa Y. Synlett 2007, 615
References and Notes
A benzene solution (20 mL) of 1a (500 mg, 2.01 mmol) and n-BuN3 (598 mg, 6.04 mmol) was heated to reflux for 14 h. Decantation (hexane) of the residue after removal of solvent and excess amount of n-BuN3 followed by evaporation afforded 3a; yield: 4.87 mg (84%); pale yellow oil. MS: m/z = 287 (95) [M+], 230 (100) [M+ - n-Bu]. IR (neat): 2957, 2930, 1708, 1444, 1361, 867, 764, 691 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.99 (t, J = 7.3 Hz, 3 H), 1.51-1.61 (m, 2 H), 1.71-1.76 (m, 2 H), 3.81 (t, J = 7.2 Hz, 2 H), 5.09 (d, J = 1.5 Hz, 1 H), 5.17 (d, J = 1.5 Hz, 1 H), 7.32-7.47 (m, 6 H), 7.61-7.65 (m, 2 H), 7.90-7.94 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 13.9 (q), 20.5 (t), 33.7 (t), 51.6 (t), 98.5 (dd), 127.2 (d), 127.8 (d), 128.1 (d), 128.2 (d), 128.7 (d), 129.1 (d), 129.3 (s), 130.8 (s), 151.1 (s), 151.8 (s), 157.8 (s), 161.9 (s). Anal. Calcd for C21H21N: C, 87.76; H, 7.36; N, 4.87. Found: C, 87.44; H, 7.41; N, 4.67.
8A benzene solution (20 mL) of 1a (500 mg, 2.01 mmol) and n-BuN3 (598 mg, 6.04 mmol) was heated to reflux for 14 h. The resulting solution was subjected to column chromatography on silica gel (hexane-EtOAc = 20:1) to yield 4a (337 mg, 72%) as a pale yellow oil. UV (hexane): λmax = 332 (ε = 10500), 283 (ε = 13500) nm. MS: m/z = 232 (100) [M+], 204 (79) [M+ - CO]. IR (neat): 3062, 1773, 1751, 1445, 1360, 722, 692 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.02 (d, J = 1.7 Hz, 1 H), 5.27 (d, J = 1.7 Hz, 1 H), 7.35-7.37 (m, 3 H), 7.50-7.51 (m, 3 H), 7.76-7.78 (m, 2 H), 7.82-7.85 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 95.7 (dd), 127.5 (d), 127.83 (d), 128.78 (d), 129.1 (d), 129.4 (s), 130.1 (d), 131.0 (s), 131.5 (d), 155.5 (s), 157.0 (s), 172.4 (s), 188.2 (s). Anal. Calcd for C17H12O: C, 87.90; H, 5.21. Found: C, 87.81; H, 5.33.
11A THF solution (20 mL) of 4h (300 mg, 1.31 mmol) and BnNH2 (703 mg, 6.57 mmol) was irradiated using high pressure Hg lamp at r.t. for 8 h under N2. The residue after removal of solvent was subjected to column chromatog-raphy on silica gel (hexane-EtOAc = 5:1) to give 6h-Bn (317 mg, 72%) as a pale yellow oil. MS: m/z = 335 (3) [M+], 262 (51) [M+ - Me3Si], 91 (100) [Bn]. IR (neat): 3304, 3062, 3031, 2956, 1938, 1636, 1515, 1495, 1249, 846, 733, 696 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.08 (s, 9 H), 2.97 (s, 1 H), 4.31 (d, J = 2.1 Hz, 1 H), 4.33 (d, J = 2.1 Hz, 1 H), 5.04 (d, J = 12.1 Hz, 1 H), 5.10 (d, J = 12.1 Hz, 1 H), 6.14 (br s, 1 H), 7.00-7.03 (m, 2 H), 7.07-7.14 (m, 3 H), 7.17-7.22 (m, 3 H), 7.27-7.30 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = -1.5 (q), 41.2 (d), 43.4 (t), 79.9 (t), 103.1 (s), 126.0 (d), 127.0 (d), 127.1 (d), 127.3 (d), 128.3 (d), 128.4 (d), 136.5 (s), 138.4 (s), 171.7 (s), 210.0 (s). Anal. Calcd for C21H25NOSi: C, 75.18; H, 7.51; N, 4.17. Found: C, 75.11; H, 7.50; N, 4.27.
12A MeOH solution (20 mL) of 4h (300 mg, 1.31 mmol) was irradiated using high pressure Hg lamp at r.t. for 5 h under N2. The residue after removal of excess amount of MeOH was subjected to column chromatography on silica gel (hexane-EtOAc = 7:1) to provide 7h (322 mg, 94%) as a pale yellow oil. MS: m/z = 260 (44) [M+], 245 (77) [M+ - Me], 187 (65) [M+ - Me3Si], 73 (100) [Me3Si]. IR (neat): 2952, 1948, 1731, 1715, 1251, 1154, 850, 695 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.18 (s, 9 H), 3.19 (s, 1 H), 3.69 (s, 3 H), 5.17 (d, J = 11.8 Hz, 1 H), 5.27 (d, J = 11.8 Hz, 1 H), 7.18-7.21 (m, 1 H), 7.25-7.30 (m, 2 H), 7.32-7.39 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = -1.7 (q), 38.8 (d), 51.5 (q), 79.5 (t), 101.4 (s), 126.0 (d), 126.7 (d), 128.4 (d), 137.4 (s), 173.3 (s), 173.3 (s), 210.9 (s). Anal. Calcd for C15H20O2Si: C, 69.19; H, 7.74. Found: C, 69.28; H, 7.96.
15To an ethereal solution (50 mL) of 8c prepared from piperidine (335 mg, 3.94 mmol) according to the reported procedure,13 4h (300 mg, 1.31 mmol) was added and the mixture was irradiated using high pressure Hg lamp at r.t. for 8 h under N2. The residue after removal of solvent was subjected to column chromatography on silica gel (hexane-EtOAc = 5:1) to give 9c (291 mg, 71%) as a colorless oil. MS: m/z = 311 (10) [M+], 296 (100) [M+ - Me]. IR (neat): 2939, 1623, 1462, 1442, 1269, 1251, 878, 843 cm-1. 1H NMR (400 MHz, CDCl3): δ = -0.15 (s, 9 H), 1.49-1.57 (m, 1 H), 1.67-1.74 (m, 3 H), 1.79-1.87 (m, 1 H), 1.95-1.99 (m, 1 H), 2.58 (td, J = 2.6, 12.8 Hz, 1 H), 4.14 (br d, 1 H), 4.64-4.71 (m, 1 H), 4.68 (s, 1 H), 5.18 (s, 1 H), 7.11-7.12 (m, 2 H), 7.33-7.36 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 0.93 (q), 25.1 (t), 25.7 (t), 36.2 (t), 43.9 (dd), 61.8 (d), 118.6 (d), 127.8 (d), 129.0 (d), 129.7 (d), 133.8 (s), 138.8 (s), 144.9 (s), 155.2 (s), 165.6 (s). Anal. Calcd for C19H25NOSi: C, 73.26; H, 8.09; N, 4.50. Found: C, 73.08; H, 8.15; N, 4.44.