Subscribe to RSS
DOI: 10.1055/s-2007-986656
A Versatile One-Pot Synthesis of Fused Polycyclic Imidazole-naphthoquinone Derivatives through Imidazole-4,5-quinodimethane Generation Followed by Diels-Alder Cycloaddition
Publication History
Publication Date:
12 September 2007 (online)
Abstract
An efficient procedure for the trapping of an imidazole-4,5-quinodimethane intermediate 3 with quinones in boiling toluene and in the presence of 18-crown-6 is described. In all cases the fully aromatized imidazole-naphthoquinone derivatives were isolated as the main reaction products in satisfactory yields. However, in the case of benzo- and naphthoquinone, aromatized products were also isolated, in which the bromine in the 2-imidazole position was replaced by hydrogen, whereas in the case of the asymmetrical 2-phenylbenzoquinone and 5,8-quinoline dione inseparable regioisomeric mixtures were formed.
Key words
crown ether - Diels-Alder reactions - imidazole o-quinodimethanes - fused imidazolenaphthoquinones - one-pot reaction
-
1a
Segura JL.Martin N. Chem. Rev. 1999, 99: 3199 -
1b
Collier SJ.Storr RC. Prog. Heterocycl. Chem. 1998, 10: 25 -
2a
Nicolaou KC.Gray DLF. J. Am. Chem. Soc. 2004, 126: 607 -
2b
Oumzil K.Ibrahim-Ouali M.Santelli M. Steroids 2006, 71: 886 -
2c
Barluenga J.Garcia-Garcia P.Fernandez-Rodriguez MA.Aguilar E.Merino I. Angew. Chem. Int. Ed. 2005, 44: 5875 - 3
Bolton JL.Trush MA.Penning TM.Dryhurst G.Monks TJ. Chem. Res. Toxicol. 2000, 13: 135 - 4
Powis G. Pharmacol. Ther. 1987, 35: 57 - 5
O’Brien PJ. Chem. Biol. Interact. 1991, 80: 1 - 6
Paz MM.Das A.Palom Y.He Q.-Y.Tomasz M. J. Med. Chem. 2001, 44: 2834 - 7
Tudor G.Gutierrez P.Aguilera-Gutierrez A.Sausville EA. Biochem. Pharmacol. 2003, 65: 1061 -
8a
Tandon VK.Yadav DB.Chaturvedi AK.Shukla PK. Bioorg. Med. Chem. Lett. 2005, 15: 3288 -
8b
Hong S.-Y.Chung K.-H.You H.-J.Choi IH.Chae MJ.Han J.-Y.Jung O.-J.Kang S.-J.Ryu C.-K. Bioorg. Med. Chem. Lett. 2004, 14: 3563 -
9a
Ryu C.-K.Choi KU.Shim J.-Y.You H.-J.Choi IH.Chae MJ. Bioorg. Med. Chem. 2003, 11: 4003 -
9b
Ryu C.-K.Han J.-Y.Jung O.-J.Lee SK.Lee JY.Jeong SH. Bioorg. Med. Chem. Lett. 2005, 15: 679 -
9c
Ryu C.-K.Kang H.-Y.Yi Y.-J.Shin K.-H.Lee B.-H. Bioorg. Med. Chem. Lett. 2000, 10: 1589 -
10a
Kuo S.-C.Ibuka T.Huang L.-J.Lien J.-C.Yean S.-R.Hung S.-C.Lednicer D.Morris-Natschke S.Lee K.-H. J. Med. Chem. 1996, 39: 1447 -
10b
Lee H.-J.Kim JS.Park S.-Y.Suh M.-E.Kim HJ.Seo E.-K.Lee C.-O. Bioorg. Med. Chem. 2004, 12: 1623 -
11a
Tandon VK.Maurya HK.Yadav DB.Tripathi A.Kumar M.Shukla PK. Bioorg. Med. Chem. Lett. 2006, 16: 5883 -
11b
Tandon VK.Yadav DB.Maurya HK.Chaturvedi AK.Shukla PK. Bioorg. Med. Chem. 2006, 14: 6120 -
12a
Barnard EA.Stein WD. Adv. Enzymol. Relat. Subj. Biochem. 1958, 20: 51 -
12b
Boiani M.Gonzalez M. Mini-Rev. Med. Chem. 2005, 5: 409 -
12c
Jin Z. Nat. Prod. Rep. 2005, 22: 196 - 13
Lipshutz BH. Chem. Rev. 1986, 86: 795 - 14
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 - 15
Nieto I.Cervantes-Lee F.Smith JM. Chem. Commun. 2005, 3811 - 16
Cesar V.Bellemin-Laponnaz S.Gade LH. Chem. Soc. Rev. 2004, 33: 619 -
17a
Herrmann WA.Kocher C. Angew. Chem., Int. Ed. Engl. 1997, 36: 2162 -
17b
Khramov DM.Bielawski CW. Chem. Commun. 2005, 4958 -
17c
Majo VJ.Perumal PT. J. Org. Chem. 1998, 63: 7136 -
17d
Parenty ADC.Guthrie KM.Song Y.-F.Smith LV.Burkholder E.Cronin L. Chem. Commun. 2006, 1194 - 18
Neochoritis C.Livadiotou D.Stephanidou-Stephanatou J.Tsoleridis CA. Tetrahedron Lett. 2007, 48: 2275 - 19
Kotha S.Ghosh AK. Tetrahedron Lett. 2004, 45: 2931 -
20a
Al Hariri M.Jouve K.Pautet F.Domard M.Fenet B.Fillion H. J. Org. Chem. 1997, 62: 405 -
20b
Tapia RA.Prieto Y.Pautet F.Walchshofer N.Fillion H.Fenet B.Sarciron M.-E. Bioorg. Med. Chem. 2003, 11: 3407 -
20c
Tapia RA.Alegria L.Pessoa CD.Salas C.Cortés MJ.Valderrama JA.Sarciron M.-E.Pautet F.Walchshofer N.Fillion H. Bioorg. Med. Chem. 2003, 11: 2175
References and Notes
All melting points were determined on a Büchi apparatus and are uncorrected. The 1H NMR and 13C NMR spectra were recorded on a Bruker AM300 spectrometer in CDCl3 with TMS as internal standard. All coupling constants are given in Hz and chemical shifts are given in ppm.
Selected Data for Compound 4: Mp 125-127 °C. IR (mull) νmax = 1666, 1604 cm-1. 1H NMR22 (300 MHz, CDCl3): δ = 3.570 (s, 3 H, NMe), 6.418 (m, J = 9.1, 2.6 Hz, 2 H, C-2′, C-6′), 6.982 (d, J = 10.4 Hz, 1 H, C-7 or C-6), 7.014 (d, J = 10.4 Hz, 1 H, C-6 or C-7), 7.365 (m, J = 9.1, 2.6 Hz, 2 H, C-3′, C-5′), 7.900 (d, J = 0.5 Hz, 1 H, C-9), 8.43 (d, J = 0.5 Hz, 1 H, C-4). 13C NMR (75 MHz, CDCl3): δ = 40.3 (NMe), 108.6 (C-9), 114.2 (C-4′), 114.4 (C-2′, C-6′), 116.2 (C-2), 119.6 (C-4), 128.6 (C-8a), 132.6 (C-3′, C-5′), 136.4 (C-4a), 137.1 (C-9a), 138.9 (C-7), 139.4 (C-6), 144.4 (C-1′), 145.6 (C-3a), 184.2 (C-5), 184.5 (C-8). Anal. Calcd (%) for C18H11Br2N3O2 (461.11): C, 46.89; H, 2.40; N 9.11. Found: C, 46.79; H, 2.52; N 8.94.
Selected Data for Compound 7: Mp 235-237 °C. 1H NMR22 (300 MHz, CDCl3): δ = 3.590 (s, 3 H, NMe), 6.504 (m, J = 9.1, 2.6 Hz, 2 H, C-2′, C-6′), 7.372 (m, J = 9.1, 2.6 Hz, 2 H, C-3′, C-5′), 7.796 (m, J = 7.9, 7.6, 2.2 Hz, 1 H, C-8 or C-7), 7.817 (m, J = 7.9, 7.6, 2.2 Hz, 1 H, C-7 or C-8), 8.18 (d, J = 0.5 Hz, 1 H, C-11), 8.307 (m, J = 7.9, 2.2, 0.5 Hz, 1 H, C-9 or C-6), 8.34 (s, 1 H, C-2), 8.366 (m, J = 7.9, 2.2, 0.5 Hz, 1 H, C-6 or C-9), 8.82 (d, J = 0.5 Hz, 1 H, C-4). 13C NMR (75 MHz, CDCl3): δ = 41.9 (NMe), 109.9 (C-11), 114.6 (C-4′), 115.2 (C-2′, C-6′), 121.6 (C-4), 127.4 and 127.5 (C-9 and C-6), 129.9 (C-4a), 130.2 (C-10a), 132.5 and 133.8 (C-5a and C-9a), 132.6 (C-3′, C-5′), 134.0 and 134.2 (C-7 and C-8), 135.5 (C-11a), 145.3 (C-3a), 147.1 (C-1′), 147.4 (C-2), 182.7 (C-5), 183.0 (C-10). MS (EI, 70 eV): m/z (%) = 431/433 (72) [M+], 416/417 (10) [M - CH3]
+
, 352 (7), 281 (43), 207 (100). Anal. Calcd (%) for C22H14BrN3O2 (432.27): C, 61.13; H, 3.26; N 9.72. Found: C, 61.25; H, 3.17; N, 9.65.
The multiplicities and chemical shifts of the aromatic protons have been confirmed after simulation with program SpinWorks, version 2.2.0, available from ftp://davinci.chem.umanitoba.ca.