RSS-Feed abonnieren
DOI: 10.1055/s-2007-986653
A Simple and Efficient Catalyst System for the Asymmetric Transfer Hydrogenation of Ketones
Publikationsverlauf
Publikationsdatum:
12. September 2007 (online)
Abstract
Aryl alkyl ketones are efficiently and selectively reduced (up to 97% ee) under transfer-hydrogenation conditions in 2-propanol using rhodium catalysts based on readily available amino acid derived hydroxamic acid ligands.
Key words
asymmetric catalysis - hydrogen transfer - reductions - rhodium - ketones
-
1a
Zassinovich G.Mestroni G.Gladiali S. Chem. Rev. 1992, 92: 1051 -
1b
Ohkuma T.Noyori R. In Comprehensive Asymmetric Catalysis Vol. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.199 -
1c
Blaser H.-U.Malan C.Pugin B.Spindler F.Steiner H.Studer M. Adv. Synth. Catal. 2003, 345: 103 -
1d
Everaere K.Mortreux A.Carpentier J.-F. Adv. Synth. Catal. 2003, 345: 67 -
1e
Gladiali S.Alberico E. In Transition Metals for Organic Synthesis Vol. 2:Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. p.145 -
1f
Zanotti-Gerosa A.Herns W.Groarke M.Hancock F. Platinum Met. Rev. 2005, 49: 158 -
1g
Ikariya T.Murata K.Noyori R. Org. Biomol. Chem. 2006, 4: 393 -
1h
Noyori R.Hashiguchi S. Acc. Chem. Res. 1997, 30: 97 -
1i
Bianchini C.Glendenning L. Chemtracts 1997, 10: 333 -
1j
Palmer MJ.Wills M. Tetrahedron: Asymmetry 1999, 10: 2045 -
1k
Ohkuma T.Noyori R. Comprehensive Asymmetric Catalalysis Suppl. 1:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 2004. p.43 -
1l
Kitamura M.Noyori R. In Ruthenium in Organic SynthesisMurahashi S.-I. Wiley-VCH; Weinheim: 2004. p.3 -
1m
Gladiali S.Alberico E. Chem. Soc. Rev. 2006, 35: 226 -
1n
Wu X.Xiao J. Chem. Commun. 2007, 2449 - For recent selected examples, see:
-
2a
Brandt P.Roth P.Andersson PG. J. Org. Chem. 2004, 69: 4885 -
2b
Kundu MK.Woggon W.-D. Angew. Chem. Int. Ed. 2004, 43: 6731 -
2c
Xue D.Chen Y.-C.Cui X.Wang Q.-W.Zhu J.Deng J.-G. J. Org. Chem. 2005, 70: 3584 -
2d
Wu X.Li X.King F.Xiao J. Angew. Chem. Int. Ed. 2005, 44: 3407 -
2e
Hayes AM.Morris DJ.Clarkson GJ.Wills M. J. Am. Chem. Soc. 2005, 127: 7318 -
2f
Baratta W.Chelucci G.Gladiali S.Siega K.Toniutti M.Zanette M.Zangrando E.Rigo P. Angew. Chem. Int. Ed. 2005, 44: 6214 -
2g
Enthaler S.Jackstell R.Hagemann B.Junge K.Erre G.Beller M. J. Organomet. Chem. 2006, 691: 4652 -
2h
Reetz MT.Li X. J. Am. Chem. Soc. 2006, 128: 1044 -
3a
Pastor IM.Västilä P.Adolfsson H. Chem. Commun. 2002, 2046 -
3b
Pastor IM.Västilä P.Adolfsson H. Chem. Eur. J. 2003, 9: 4031 -
3c
Bøgevig A.Pastor IM.Adolfsson H. Chem. Eur. J. 2004, 10: 294 -
3d
Västilä P.Zaitsev AB.Wettergren J.Privalov T.Adolfsson H. Chem. Eur. J. 2006, 12: 3218 - 4
Zaitsev AB.Adolfsson H. Org. Lett. 2006, 8: 5129 - For other examples of amino acid based ligands in the transfer hydrogenation of ketones, see:
-
5a
Ohta T.Nakahara S.Shigemura Y.Hattori K.Furokawa I. Chem. Lett. 1998, 491 -
5b
Ohta T.Nakahara S.Shigemura Y.Hattori K.Furokawa I. Appl. Organomet. Chem. 2001, 15: 699 -
5c
Carmona D.Lahoz FJ.Atencio R.Oro LA.Lamata MP.Viguri F.San José E.Vega C.Reyes J.Joó F.Kathó . Chem. Eur. J. 1999, 5: 1544 -
5d
Kathó .Carmona D.Viguri F.Remacha CD.Kovács J.Joó F.Oro LA. J. Organomet. Chem. 2000, 593-594: 209 -
5e
Carmona D.Lamata MP.Viguri F.Dobrinovich I.Lahoz FJ.Oro LA. Adv. Synth. Catal. 2002, 344: 499 -
5f
Carmona D.Lamata MP.Oro LA. Eur. J. Inorg. Chem. 2002, 2239 -
5g
Faller JW.Lavoie AR. Organometallics 2001, 20: 5245 -
5h
Rhyoo HY.Yoon Y.-A.Park H.-J.Chung YK. Tetrahedron Lett. 2001, 42: 5045 -
5i
Rhyoo HY.Park H.-J.Chung YK. Chem. Commun. 2001, 2064 -
5j
Rhyoo HY.Park H.-J.Suh WH.Chung YK. Tetrahedron Lett. 2002, 43: 269 - Highly efficient vanadium catalysts containing ligands based on hydroxamic acids were recently employed in the asymmetric epoxidation of allylic alcohols, see:
-
6a
Zhang W.Basak A.Kosugi Y.Hoshino Y.Yamamoto H. Angew. Chem. Int. Ed. 2005, 44: 4389 - For selected earlier reports, see:
-
6b
Michaelson RC.Palermo RE.Sharpless KB. J. Am. Chem. Soc. 1977, 99: 1992 -
6c
Murase N.Hoshino Y.Oishi M.Yamamoto H. J. Org. Chem. 1999, 64: 338 -
6d
Hoshino Y.Yamamoto H. J. Am. Chem. Soc. 2000, 122: 10452 -
6e
Bolm C.Kühn T. Synlett 2000, 899 -
6f
Bolm C. Coord. Chem. Rev. 2003, 237: 245 - 7
Giacomelli G.Porcheddu A.Salaris M. Org. Lett. 2003, 5: 2715 - 9 For the original report on the importance of external base in transition-metal-catalyzed transfer-hydrogenation reactions, see:
Chowdhury RL.Bäckvall J.-E. J. Chem. Soc., Chem. Commun. 1991, 1063
References and Notes
General Procedure for the Preparation of Hydroxamic Acid Ligands 1a-d
To a solution of 2,4,6-trichloro-1,3,5-triazine (0.1 mmol) in anhyd CH2Cl2 (8 mL) cooled to 0 °C, the following components were added in the order they are written: Boc-protected amino acid (3 mmol), NMM (6 mmol), DMAP (0.3 mmol), and NH2OH·HCl (3 mmol). The reaction mixture was stirred at r.t. for 14 h and thereafter filtered through a plug of silica, using EtOAc as eluent. The residue obtained after evaporation of the filtrate was chromatog-raphed on silica (EtOAc-pentane, 10:1), followed by recrystallization from acetone-pentane to give the hydroxamic acids.
Compound 1a: yield 41%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.09 (s, 1 H), 8.22 (br s, 1 H), 6.06 (s, 1 H), 4.08 (q, J = 7.11 Hz, 1 H), 1.40 (s, 9 H), 1.29 (d, J = 7.11 Hz, 3 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 170.0, 155.1, 78.3, 47.7, 27.5, 17.8.
Compound 1b: yield 25%. 1H NMR (400 MHz, acetone-d
6, 25 °C ): δ = 10.18 (br s, 1 H), 8.22 (br s, 1 H), 5.91 (d, J = 8.16 Hz, 1 H), 3.75-3.85 (m, 1 H), 1.40 (s, 9 H), 0.89-0.94 (m, 6 H). 13C NMR (100 MHz, acetone-d
6, 25 °C ): δ = 168.4, 155.4, 78.2, 57.5, 30.8, 27.5, 18.5, 17.6.
Compound 1c: yield 25%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.20 (br s, 1 H), 8.37 (br s, 1 H), 7.16-7.31 (m, 5 H), 6.12 (d, J = 7.32 Hz, 1 H), 4.23-4.36 (m, 1 H), 3.10 (dd, J = 13.71, 6.03 Hz, 1 H), 2.91 (dd, J = 13.71, 8.59 Hz, 1 H), 1.33 (s, 9 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 168.4, 155.1, 137.5, 129.2, 128.1, 126.3, 78.4, 53.6, 38.1, 27.5.
Compound 1d: yield 10%. 1H NMR (400 MHz, acetone-d
6, 25 °C): δ = 10.39 (br s, 1 H), 8.25 (br s, 1 H), 7.42-7.47 (m, 2 H), 7.26-7.37 (m, 3 H), 6.46 (d, J = 6.10 Hz, 1 H), 5.20 (d, J = 6.10 Hz, 1 H), 1.39 (s, 9 H). 13C NMR (100 MHz, acetone-d
6, 25 °C): δ = 167.3, 154.7, 138.9, 128.3, 127.6, 127.0, 78.6, 55.7, 27.5.
General Procedure for the Transfer Hydrogenation of Ketones Using Ligands 1a-d
[{RhCl2Cp*}2] (0.0025 mmol), ligand (0.0055 mmol), and LiCl (0.05 mmol) were dried under vacuum in a dry Schlenk tube for 15 min. Ketone (1 mmol), i-PrOH (4.5 mL), and a 0.01 M solution of i-PrONa in i-PrOH (0.5 mL, 5 mol%) were added under nitrogen. The reaction mixture was stirred at ambient temperature. Aliquots were taken after the reaction times indicated in Tables
[1]
and
[2]
and were then passed through a pad of silica with EtOAc as the eluent. The resulting solutions were analyzed by GLC (CP Chirasil DEXCB).
Turnover frequencies determined after 30 min reaction time.