Abstract
Metabolic characteristics of intracranial metastases, detected with proton magnetic resonance spectroscopy (1 H-MRS) have known associations with clinical predictors of tumor response to radiosurgery. Therefore, it can be suspected that the metabolic profile of the neoplasm by itself might have some prognostic significance for the outcome after irradiation. Twenty-six intracranial metastases, which underwent metabolic evaluation with single-voxel 1 H-MRS before gamma knife radiosurgery (GKR) and were followed for at least 3 months after treatment, were selected for retrospective analysis. The tumors most frequently originated from the lungs (9 cases), breast (7 cases), colon and rectum (5 cases). The average volume of the investigated intracranial neoplasm was 5.4±2.0 mL. The average marginal irradiation dose was 18.6±2.3 Gy. The mean follow-up after GKR constituted 8.0±5.5 months. Tumor response to GKR was identified in 13 cases on average 2.2±1.8 months after treatment. Local recurrence was marked in 10 cases on average 8.7±4.1 months after treatment. None of the investigated 1 H-MRS metabolic parameters of intracranial metastases showed a statistically significant association with the outcome after GKR. The negative results of the present study make doubtful the predictive value of metabolic characteristics of intracranial metastases, detected with single-voxel 1 H-MRS, for the outcome after radiosurgery.
Key words
metastatic brain tumor - proton magnetic resonance spectroscopy - gamma knife radiosurgery - response
References
1
Graves EE, Nelson SJ, Vigneron DB, Chin C, Verhey L, MacDermott M, Larson D, Sneed PK, Chang S, Prados M, Lamborn K, Dillon W.
A preliminary study of the prognostic value of proton magnetic resonance spectroscopic imaging in gamma knife radiosurgery of recurrent malignant gliomas.
Neurosurgery.
2000;
46
319-328
2
Preul MC, Caramanos Z, Villemure JG, Shenouda G, LeBlanc R, Langleben A, Arnold D.
Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy.
Neurosurgery.
2000;
46
306-318
3
Tarnawski R, Sokol M, Pieniazek P, Maciejewski B, Walecki J, Miszczyk L, Krupska T.
1 H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas.
Int J Radiat Oncol Biol Phys.
2002;
52
1271-1276
4
Kuznetsov YE, Caramanos Z, Antel SB, Preul MC, Leblanc R, Villemure J-G, Pokrupa R, Olivier A, Sadikot A, Arnold DL.
Proton magnetic resonance spectroscopic imaging can predict length of survival in patients with supratentorial gliomas.
Neurosurgery.
2003;
53
565-576
5
Oh J, Henry RG, Pirzkall A, Lu Y, Li X, Catalaa I, Chang S, Dillon WP, Nelson SJ.
Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume.
J Magn Reson Imaging.
2004;
19
546-554
6
Sijens PE, Dijk P van, Oudkerk M.
Correlation between choline level and Gd-DTPA enhancement in patients with brain metastases of mammary carcinoma.
Magn Reson Med.
1994;
32
549-555
7
Sijens PE, Levendag PC, Vecht CJ, Dijk P van, Oudkerk M.
1 H MR spectroscopy detection of lipids and lactate in metastatic brain tumors.
NMR Biomed.
1996;
9
65-68
8
Chernov MF, Hayashi M, Izawa M, Ono Y, Hon T.
Proton magnetic resonance spectroscopy (MRS) of metastatic brain tumors: variations of metabolic profile.
Int J Clin Oncol.
2006;
11
375-384
9
Chernov MF, Ono Y, Kubo O, Hori T.
Comparison of 1 H-MRS-detected metabolic characteristics in single metastatic brain tumors of different origin.
Brain Tumor Pathol.
2006;
23
35-40
10
Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE.
Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions.
Neuroradiology.
2002;
44
371-381
11
Chernov MF, Hayashi M, İzawa M, Usukura M, Yoshida S, Ono Y, Muragaki Y, Kubo O, Hori T, Takakura K.
Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases.
Brain Tumor Pathol.
2006;
23
19-27
12
Mehta MP, Rozental JM, Levin AB, Mackie TR, Kubsad SS, Gehring MA, Kinsella TJ.
Defining the role of radiosurgery in the management of brain metastases.
Int J Radiat Oncol Biol Phys.
1992;
24
619-625
13
Auchter RM, Lamond JP, Alexander
III
E, Buatti JM, Chappel R, Friedman WA, Kinsella TJ, Levin AB, Noves WR, Schultz CJ, Loeffler JS, Mehta MP.
A multi-institutional outcome and prognostic factor analysis of radiosurgery for respectable single brain metastasis.
Int J Radiat Oncol Biol Phys.
1996;
35
27-35
14
Flickinger JC, Lunsford LD, Somaza S, Kondziolka D.
Radiosurgery: its role in brain metastasis management.
Neurosurg Clin N Am.
1996;
7
497-504
15
Shiau CY, Sneed PK, Shu HKG, Lamborn KR, MacDermott MW, Chang S, Nowak P, Petti PL, Smith V, Verhey U, Ho M, Park E, Wara WM, Gutin PH, Larson DA.
Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control.
Int J Radiat Oncol Biol Phys.
1997;
37
375-383
16
Feigi GC, Horstmann GA.
Volumetric follow up of brain metastases: a useful method to evaluate treatment outcome and predict survival after gamma knife surgery?.
J Neurosurg.
2006;
105
((Suppl):)
91-98
17
Flickinger JC, Kondziolka D, Lunsford LD, Coffey RJ, Goodman ML, Shaw EJ, Hudgins WR, Weiner R, Harsh GR IV, Sneed PK, Larson DA.
A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis.
Int J Radiat Oncol Biol Phys.
1994;
28
797-802
18
Alexander
III
E, Moriarty TM, Davis RB, Wen PY, Fine HA, Black PM, Kooy HM, Loeffler JS.
Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases.
J Natl Cancer Inst.
1995;
87
34-40
19
Petrovich Z, Yu C, Giannotta SL, O’Day S, Apuzzo MU.
Survival and pattern of failure in brain metastasis treated with stereotactic gamma knife radiosurgery.
J Neurosurg.
2002;
97
((Suppl 5):)
499-506
20
Lutterbach J, Cyron D, Henne K, Ostertag CB.
Radiosurgery followed by planned observation in patients with one to three brain metastases.
Neurosurgery.
2003;
52
1066-1074
21
Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar AK, Kondziolka D, Lunsford LD.
Analysis of tumor control and toxicity in patients who have survived at least one year after radiosurgery for brain metastases.
Int J Radiat Oncol Biol Phys.
2003;
57
452-464
22
MacDermott M, Sneed PK.
Radiosurgery in metastatic brain cancer.
Neurosurgery.
2005;
57
((Suppl 5):)
S45-S53
23
Varlotto JM, Flickinger JC, Niranjan A, Bhatnagar A, Kondziolka D, Lunsford LD.
The impact of whole-brain radiation therapy on the long-term control and morbidity of patients surviving more than one year after gamma knife radiosurgery for brain metastases.
Int j Radiat Oncol Biol Phys.
2005;
62
1125-1132
24
Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, Kenjyo M, Oya N, Hirota S, Shioura H, Kunieda E, Inomata T, Hayakawa K, Katoh N, Kobashi G.
Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial.
JAMA.
2006;
295
2483-2491
25
Kim DG, Chung H-T, Gwak H-S, Paek SH, Jung H-W, Han DH.
Gamma knife radiosurgery for brain metastases: prognostic factors for survival and local control.
J Neurosurg.
2000;
93
((Suppl 3))
23-29
26
Goodman KA, Sneed PK, MacDermott MW, Shiau C-Y, Lamborn KR, Chang S, Park E, Wara WM, Larson DA.
Relationship between pattern of enhancement and local control of brain metastases after radiosurgery.
Int J Radiat Oncol Biol Phys.
2001;
50
139-146
27
Chang EL, Selek U, Hassenbusch
III
SJ, Maor MH, Allen PK, Mahajan A, Sawaya R, Woo SY.
Outcome variation among “radioresistant” brain metastases treated with stereotactic radiosurgery.
Neurosurgery.
2005;
56
936-945
28
Hasegawa T, Kondziolka D, Flickinger JC, Germanwala A, Lunsford LD.
Brain metastases treated with radiosurgery alone: an alternative to whole brain radiotherapy?.
Neurosurgery.
2003;
52
1318-1326
29 Szeifert GT, Salmon I, David P, Devriendt D, De Smedt F, Rorive S, Brotchi J, Levivier M. Tumor control and growth in a patient with two cerebral metastases treated with the Leksell Gamma Knife. In: Kondziolka D (ed.), Radiosurgery . Vol. 4 Basel: Karger 2002: 152-161
30
Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD.
Stereotactic radiosurgery for four or more intracranial metastases.
Int J Radiat Oncol Biol Phys.
2006;
64
898-903
31
Vogelbaum MA, Angelov L, Lee SY, Li L, Barnett GH, Suh JH.
Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin.
J Neurosurg.
2006;
104
907-912
32
Lassen U, Andersen P, Daugaard G, Hoim S, Jensen M, Svarer C, Poulsen HS, Paulson OB.
Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography.
Clin Cancer Res.
1998;
4
2591-2597
33
Sijens PE, Knopp MV, Brunetti A, Wicklow K, Alfano B, Bachert P, Sanders JA, Stillman AE, Kett H, Sauter R, Oudkerk M.
1 HMR spectroscopy in patients with metastatic brain tumors: a multicenter study.
Magn Reson Med.
1995;
33
818-826
34
Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K.
Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy.
Eur Radiol.
2001;
11
1784-1791
35
Young RJ, Sills AK, Brem S, Knopp EA.
Neuroimaging of metastatic brain disease.
Neurosurgery.
2005;
57
((Suppl 5):)
S10-S23
Correspondence
M. ChernovMD, D.Med.Sci.
Department of Neurosurgery
Tokyo Women's Medical University
8-1 Kawada-cho
Shinjuku-ku
162-8666 Tokyo
Japan
Phone: +81/3/3353 81 11 (ext.26216)
Fax: +81/3/5269 74 38
Email: m_chernov@yahoo.com