Subscribe to RSS
DOI: 10.1055/s-2007-985606
Synthesis of Enantiomerically Pure Dihydrofurans and Dihydropyrans from Common Precursors Using RCM and Tandem RCM-Isomerization
Publication History
Publication Date:
23 August 2007 (online)
Abstract
Starting from glyceraldehyde, structurally and stereochemically diverse dihydrofurans and dihydropyrans with a 1,2-dihydroxyethylene side chain can be accessed in few steps via allyl metal addition, O-allylation and ring-closing metathesis (RCM) or tandem RCM-isomerization, respectively. The synthesis of dihydrofurans requires a selective double-bond isomerization on the homoallylic alcohol stage, prior to O-allylation and RCM or RCM-isomerization.
Key words
carbohydrates - isomerizations - metathesis - ruthenium - tandem reactions
- 1
Goncalves AG.Ducatti DRB.Duarte MER.Noseda MD. Carbohydr. Res. 2002, 337: 2443 - 2
Williams DR.Klingler FD.Dabral V. Tetrahedron Lett. 1988, 29: 3415 - 3
Takahashi S.Ogawa N.Koshino H.Nakata T. Org. Lett. 2005, 7: 2783 - 4
Zanardi F.Battistini L.Rassu G.Auzzas L.Pinna L.Marzocchi L.Acquotti D.Casiraghi G. J. Org. Chem. 2000, 65: 2048 - 5
Herdeis C.Telser J. Eur. J. Org. Chem. 1999, 1407 - 6
Ghosh AK.McKee SP.Thompson WJ. J. Org. Chem. 1991, 56: 6500 - 7
Giovanninetti G.Cavrini V.Garuti L.Roveri P.Amorosa M.Gaggi R.Defaye J. Eur. J. Med. Chem. 1980, 15: 23 - 8
Lundt I.Frank H. Tetrahedron 1994, 50: 13285 - 9
Kurszewska M.Skorupowa E.Madaj J.Konitz A.Wojnowski W.Wisniewski A. Carbohydr. Res. 2002, 337: 1261 - 10
van Delft FL.Valentijn ARPM.van der Marel GA.van Boom JH. J. Carbohydr. Chem. 1999, 18: 165 - 11
van Delft FL.Valentijn ARPM.van der Marel GA.van Boom JH. J. Carbohydr. Chem. 1999, 18: 191 - 12
Ceré V.Mazzini C.Paolucci C.Pollicino S.Fava A. J. Org. Chem. 1993, 58: 4567 - 13
Masaki Y.Imaeda T.Nagata K.Oda H.Ito A. Tetrahedron Lett. 1989, 30: 6395 - 14
Alali FQ.Liu X.-X.McLaughlin JL. J. Nat. Prod. 1999, 62: 504 - 15
Jurczak J.Bauer T. Tetrahedron 1986, 42: 5045 - 16
Chattopadhyay A.Mamdapur VR. J. Org. Chem. 1995, 60: 585 - 17
Jurczak J.Pikul S.Bauer T. Tetrahedron 1986, 42: 447 - 18
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 - 19
Schmidt B. Pure Appl. Chem. 2006, 78: 469 - 20
Schmidt B. J. Mol. Catal. A: Chem. 2006, 254: 53 - 21
Schmidt B. Eur. J. Org. Chem. 2003, 816 - 22
Schmidt B. Chem. Commun. 2004, 742 - 23
Schmidt B. J. Org. Chem. 2004, 69: 7672 - 24
Sutton AE.Seigal BA.Finnegan DF.Snapper ML. J. Am. Chem. Soc. 2002, 124: 13390 - 25
Fogg DE.dos Santos EN. Coord. Chem. Rev. 2004, 248: 2365 - 26
Tolstikov AG.Tolstikov GA. Russ. Chem. Rev. 1993, 62: 579 - 27
Mulzer J.Angermann A. Tetrahedron Lett. 1983, 24: 2843 - 28
Chattopadhyay A. J. Org. Chem. 1996, 61: 6104 - 29
Goekjian PG.Lugo-Mas P.Cable SL.Cole JO.White JW.Thompson DJ.Dudley TP.Jirousek MR.Dixon JT.Ballas LM. J. Fluorine Chem. 1999, 98: 137 - 30
Brar A.Vankar YD. Tetrahedron Lett. 2006, 47: 9035 - 31
Schwab P.Grubbs RH.Ziller JW. J. Am. Chem. Soc. 1996, 118: 100 - 33
Ghosh AK.Cappiello J.Shin D. Tetrahedron Lett. 1998, 39: 4651 - 34
Fürstner A.Langemann K. Synthesis 1997, 792 - 35
Fürstner A.Thiel OR.Kindler N.Bartkowska B. J. Org. Chem. 2000, 65: 7990 - 36
Patel S.Mishra BK. Tetrahedron 2007, 63: 4367 - 37
Marco JA.Carda M.Rodríguez S.Castillo E.Kneeteman MN. Tetrahedron 2003, 59: 4085 - 38
Krompiec S.Kuznik N.Krompiec M.Penczek R.Mrzigod J.Tórz A. J. Mol. Catal. A: Chem. 2006, 253: 132 - 39
van Otterlo WAL.Morgans GL.Madeley LG.Kuzvidza S.Moleele SS.Thornton N.de Koning CB. Tetrahedron 2005, 61: 7746 - 40
Faulkner J.Edlin CD.Fengas D.Preece I.Quayle P.Richards SN. Tetrahedron Lett. 2005, 46: 2381 - 41
Schmidt B. Eur. J. Org. Chem. 2004, 1865 - 42
Schmidt B. Synlett 2004, 1541 - 43
Arisawa M.Terada Y.Nakagawa M.Nishida A. Angew. Chem. Int. Ed. 2002, 41: 4732 - 44
Louie J.Grubbs RH. Organometallics 2002, 21: 2153 - 45
Gurjar MK.Yakambram P. Tetrahedron Lett. 2001, 42: 3633 - 46
Trost BM.Kulawiec RJ. J. Am. Chem. Soc. 1993, 115: 2027 - 47
Lee C.-LK.Lee C.-HA.Tan K.-T.Loh TP. Org. Lett. 2004, 6: 1281 - 48
Suzuki M.Sugiyama T.Watanabe M.Murayama T.Yamashita K. Agric. Biol. Chem. 1987, 51: 1121
References and Notes
RCM of dienes 7 has very recently been described in a different context, while our work was in progress. See ref. 30.
49
Synthesis of Cyclic Enol Ethers 9 and 18: To a solution of the corresponding diene (1.0 mmol) in toluene (10 mL) was added [Cl2(PCy3)2Ru=CHPh] (41 mg, 5 mol%). The solution was stirred at 40 °C until the starting material was fully consumed (approximately 30 min, TLC), and 2-propanol (1 mL/mmol) and NaOH (0.25 equiv) were added. The solution was then heated to reflux until the RCM product was completely converted into the enol ether. The reaction mixture was diluted with MTBE and washed with H2O. The organic layer was separated, dried with MgSO4, filtered, and evaporated. Column chromatography on silica yielded the dihydropyrans or the dihydrofurans. (R,R)-9: [α]23
D -45 (c = 0.9, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 6.41 (d, J = 6.0 Hz, 1 H, H6), 4.69 (m, 1 H, H5), 4.18 (ddd, J = 6.6, 6.6, 6.6 Hz, 1 H, OH2CCHO), 4.03 (dd, J = 6.6, 8.2 Hz, 1 H, OH
2CCHO), 3.82 (ddd, J = 2.7, 6.6, 9.3 Hz, 1 H, H2), 3.75 (dd, J = 7.1, 8.2 Hz, 1 H, OH
2CCHO), 1.90-2.17 (2 H, H4), 1.22-1.78 [12 H, H3, (CH2)5]. 13C NMR (75 MHz, CDCl3): δ = 143.6, 110.2, 100.4, 77.0, 75.7, 65.1, 35.9, 34.9, 25.1, 23.9, 23.8, 23.5, 19.4. HRMS: m/z [M+ + Na] calcd for C13H20O3Na: 247.1310; found: 247.1308.
(R,R)-18: [α]24
D 51 (c = 0.9, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 6.25 (ddd, J = 2.4, 2.4, 2.4 Hz, 1 H, H5), 4.89 (ddd, J = 2.4, 2.4, 2.4 Hz, 1 H, H4), 4.48 (ddd, J = 6.8, 6.8, 10.3 Hz, 1 H, H2), 4.03-4.13 (2 H, OH
2CCHO), 3.86 (m, 1 H, OH2CCHO), 2.72 (dddd, J = 2.4, 2.4, 10.3, 15.4 Hz, 1 H, H3), 2.55 (dddd, J = 2.4, 2.4, 6.9, 15.4 Hz, 1 H, H3′), 1.40-1.70 [10 H, (CH2)5]. 13C NMR (75 MHz, CDCl3): δ = 144.9, 109.9, 99.3, 81.2, 76.4, 66.5, 36.4, 34.8, 31.7, 25.2, 24.0, 23.8. HRMS: m/z [M + H]+ calcd for C12H19O3: 211.1334; found: 211.1331.