Subscribe to RSS
DOI: 10.1055/s-2007-985596
Application of the Hypervalent Iodine Reagent to the Synthesis of Some Pentasubstituted Aporphine Alkaloids
Publication History
Publication Date:
22 August 2007 (online)
Abstract
The oxidative biaryl coupling of various N-substituted 1-benzyltetrahydroisoquinolines to the corresponding aporphines by the hypervalent iodine reagent was studied. The study sheds light on the unifying mechanism of the reaction illustrating the requirement of the p-p coupling via the six-membered transition state as the initial step. The finding was applied to the synthesis of some pentasubstituted aporphine alkaloids.
Key words
aporphine - 1-benzyltetrahydroisoquinoline - neospirinedienone - hypervalent iodine - p-p coupling
- 1
Guinaudeau H.Leboeuf M.Cave A. Lloydia 1975, 38: 275 - 2
Guinaudeau H.Leboeuf M.Cave A. Lloydia 1979, 42: 325 - 3
Guinaudeau H.Leboeuf M.Cave A. J. Nat Prod. 1983, 46: 761 - 4
Guinaudeau H.Leboeuf M.Cave A. J. Nat Prod. 1988, 51: 389 - 5
Guinaudeau H.Leboeuf M.Cave A. J. Nat Prod. 1994, 57: 1033 - 6
Kametani T.Honda T. In The Alkaloids Vol. 24:Brossi A. Academic Press; New York: 1985. p.153 - 7
Chang F.-R.Wei J.-L.Teng C.-M.Wu Y.-C. Phytochemistry 1998, 49: 2015 - 8
Chang F.-R.Wei J.-L.Teng C.-M.Wu Y.-C. J. Nat. Prod. 1998, 61: 1457 - 9
Castro O.Lopez CJ.Vergara GA. Phytochemistry 1985, 24: 203 - 10
Stermitz FR.Castro CO. J. Nat. Prod. 1983, 46: 913 - 11
Velcheva MP.Petrova RR.Samdanghiin Z.Danghaaghiin S.Yansanghiin Z.Budzikiewicz H.Hesse M. Phytochemistry 1996, 42: 535 - 12
Castro O.Lopez J.Stermitz FR. J. Nat. Prod. 1986, 49: 1036 - 13
Chang F.-R.Chen C.-Y.Wu P.-H.Kuo R.-Y.Chang Y.-C.Wu Y.-C. J. Nat. Prod. 2000, 63: 746 - 14
Hussain SF.Siddiqui MT.Guinaudeau H.Shamma M. J. Nat. Prod. 1989, 52: 428 - 15
Maekh SK.Yunusov SY.Boiko EV.Starchenko VM. Khim. Prir. Soedin. 1983, 4: 537 - 16
Landais Y.Robin JP. Tetrahedron 1992, 48: 7185 - 17
Hoshino O.Suzuki M.Ogasawara H. Heterocycles 2000, 52: 751 - 18
Kupchan SM.Liepa AJ.Kameswaran V.Bryan RF. J. Am. Chem. Soc. 1973, 95: 6861 - 19
Gottlieb L.Meyers AI. J. Org. Chem. 1990, 55: 5659 - 20
Czarnocki Z.Mieczkowski JB.Ziolkowski M. Tetrahedron: Asymmetry 1996, 7: 2711 - 21
Stang PJ.Zhdankin VV. Chem. Rev. 1996, 96: 1123 - 22
Wirth T.Hirt UH. Synthesis 1999, 1271 - 23
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523 - 24
Moreno I.Tellitu I.Herrero MT.SanMartín R.Domínguez E. Curr. Org. Chem. 2002, 6: 1433 - 25
Tohma H.Morioka H.Takizawa S.Arisawa M.Kita Y. Tetrahedron 2001, 57: 345 - 26
Herrero MT.Tellitu I.Domínguez E.Hernandez S.Moreno I.SanMartín R. Tetrahedron 2002, 58: 8581 - 27
Churruca F.SanMartín R.Carril M.Urtiaga Miren K.Solans X.Tellitu I.Domínguez E. J. Org. Chem. 2005, 70: 3178 - 28
Dohi T.Morimoto K.Kiyono Y.Maruyama A.Tohma H.Kita Y. Chem. Commun. 2005, 2930 - 29
Faul MM.Sullivan KA. Tetrahedron Lett. 2001, 42: 3271 - 30
Churruca F.SanMartín R.Tellitu I.Domínguez E. Eur. J. Org. Chem. 2005, 2481 - 31
Anakabe E.Carrillo L.Badia D.Vicario JL.Villegas M. Synthesis 2004, 1093 - 32
Huang W.-J.Singh OV.Chen C.-H.Lee S.-S. Helv. Chim. Acta 2004, 87: 167 - 33
Hamamoto H.Shiozaki Y.Nambu H.Hata K.Tohma H.Kita Y. Chem. Eur. J. 2004, 10: 4977 - 34
Hamamoto H.Shiozaki Y.Hata K.Tohma H.Kita Y. Chem. Pharm. Bull. 2004, 52: 1231 - 36
Kita Y.Tohma H.Hatanaka K.Takada T.Fujita S.Mitoh S.Sakurai H.Oka S. J. Am. Chem. Soc. 1994, 116: 3684 - 37
Kupchan SM.Kameswaran V.Lynn JT.Williams DK.Liepa AK. J. Am. Chem. Soc. 1975, 97: 5622 -
38a
Kupchan SM.Kim C.-K. J. Am. Chem. Soc. 1975, 97: 5623 -
38b For a related migration involving stereoelectronic factors, see:
Evan DA.Hart DJ.Koelsch PM. J. Am. Chem. Soc. 1978, 100: 4593 - 39
Chen W.Wu H.Bernard D.Metcalf MD.Deschamps JR.Flippen-Anderson JL.MacKerell AD.Coop A. J. Org. Chem. 2003, 68: 1929
References and Notes
Typical Procedure: To a stirred solution of N-formyl-tetrahydroisoquinoline 2g (150 mg, 0.40 mmol) in CH2Cl2 (10 mL) was added a solution of bis(trifluoroacetoxy)iodo-benzene (191 mg, 0.44 mmol) and BF3·ΟEt2 (0.12 mL, 0.88 mmol) in CH2Cl2 (5 mL) at -40 °C under an argon atmosphere. The reaction mixture was stirred at -40 °C for 1 h, then sat. NaHCO3 (30 mL) was added followed by extraction with CH2Cl2 (3 × 30 mL). The combined CH2Cl2 extracts were dried over anhyd Na2SO4 and evaporated to dryness in vacuo. The crude product was purified by PLC on silica gel using 50% EtOAc-hexane as a developing solvent to give aporphine 1g (62 mg, 42%). Recrystallization from EtOAc afforded yellow needles; mp 193.0-193.6 °C. IR (nujol): 1675, 1602, 1570, 1520 cm-1. 1H NMR (300 MHz, CDCl3): δ = 2.60-3.42 (m, 5 H, C4-H2, C5-H, C7-H2), 3.88-3.95, 4.43-4.47 (2 × m, 1 H, C5-H), 3.86, 3.93, 3.95, 3.99, 4.00 (5 × s, 12 H, 4 × OMe), 4.59-4.64, 4.95-5.06 (2 × m, 1 H, C6a-H), 6.79, 6.82 (2 × s, 1 H, C8-H), 7.08, 7.12 (2 × s, 1 H, C1-H), 7.20 (s, 1 H, C11-H), 8.30, 8.42 (2 × s, 1 H, CHO). 13C NMR (75 MHz, CDCl3): δ = 23.73, 24.78 (C-4), 32.75, 36.77 (C-7), 36.02, 42.03 (C-5), 49.30, 53.06 (C-6a), 55.90, 56.00, 56.13, 56.34, 60.56, 60.66 (4 × OMe), 106.64, 106.78 (C-1), 107.09, 107.19 (C-11), 111.67, 112.06 (C-8), 123.43, 123.75, 125.90, 126.17, 126.92, 127.77, 128.08, 128.91, 130.12, 130.46 (C-1a, C-1b, C-3a, C-7a, C-11a), 145.10, 145.55 (C-3), 148.31, 148.65 (C-10), 148.83, 148.92 (C-9), 151.54, 151.86 (C-2), 161.89, 162.22 (CHO). LRMS (EI): m/z (%) = 369 (8.28) [M]+, 337 (100.00), 309 (72.14). HRMS (FAB): m/z [M + H]+ calcd for C21H24NO5: 370.1654; found: 370.1661. Anal. Calcd for C21H23NO5: C, 68.28; H, 6.28; N, 3.79. Found: C, 68.29; H, 5.94; N, 3.70. Neospirinedienone 3e (130 mg, 91%) was obtained following the above procedure starting from isoquinoline 1e (150 mg, 0.40 mmol); mp 242.3-243.8 °C. IR (nujol): 1663, 1647, 1623, 1588, 1513 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.93-2.28 (m, 2 H, C5-H2), 2.83-3.36 (m, 2 H, C8-H2), 3.26-3.81 (m, 2 H, C6-H2), 3.69, 3.71, 3.89, 3.90 (4 × s, 9 H, 3 × OMe), 4.26 (dd, J = 4.6, 8.1 Hz, 1 H, C7a-H), 4.54 (dd, J = 2.5, 6.1 Hz, 1 H, C7a-H), 5.81, 5.86 (2 × s, 1 H, C4-H), 6.50, 6.62 (2 × s, 1 H, C1-H), 6.66, 6.67 (2 × s, 1 H, C9-H), 6.95, 7.02 (2 × s, 1 H, C12-H), 8.30, 8.48 (2 × s, 1 H, CHO). 13C NMR (75 MHz, CDCl3): δ = 32.11, 34.96 (C-8), 38.67, 40.99 (C-5), 41.68, 44.91 (C-6), 47.98, 49.23 (C-4a), 55.12, 55.18, 56.00, 56.04 (3 × OMe), 56.89, 59.32 (C-7a), 107.82, 107.98 (C-12), 110.67, 111.16 (C-9), 116.04, 117.87 (C-4), 123.15, 123.62 (C-1), 124.14, 126.18 (C-12a), 127.00, 128.16 (C-8a), 148.47, 148.61, 150.73, 151.18, 151.38, 151.75 (C-3, C-10, C-11), 156.13, 157.98 (C-1a), 160.59, 160.85 (CHO), 180.80, 180.92 (C-2). LRMS (EI): m/z (%) = 355 (47.82) [M]+, 327 (50.32), 297 (100.00).