Synlett 2007(15): 2425-2429  
DOI: 10.1055/s-2007-985586
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Phenol Abietane Diterpenes Based on the Oxidative Radical Cyclization Utilizing the Mn(OAc)3/Ac2O System

Enrique Alvarez-Manzaneda*a, Rachid Chahbouna, Eduardo Cabreraa, Esteban Alvareza, Ramón Alvarez-Manzanedab, Mohammed Lachkarc, Ibtissam Messouric
a Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
Fax: +34(958)248089; e-Mail: eamr@ugr.es;
b Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Almería, 04120 Almería, Spain
c Departement de Biologie, Unité des Substances Naturelles, Faculté de Médecine et Pharmacie, Université Mohammed V-Suissi, Rabat, Morocco
Further Information

Publication History

Received 31 May 2007
Publication Date:
16 August 2007 (online)

Abstract

A new route to phenol abietane diterpenes from trans-communic acid is reported. The key step is the transformation of a β-ketoester into the corresponding O-acetylsalicilate, via a manganese(III)-based oxidative free-radical cyclization carried out in Ac2O. Utilizing this, the first synthesis of (-)-sugikurojin A has been achieved. The immunosuppressor 19-hydroxyferruginol has also been synthesized.

    References and Notes

  • For some references on the biological activities, see:
  • 1a Nakatani N. Iwatani R. Agric. Biol. Chem.  1984,  48:  2081 
  • 1b Achenbach H. Walbel R. Nkunya MHH. Weenen H. Phytochemistry  1992,  31:  3781 
  • 1c Moujir L. Gutierrez-Navarro AM. San Andrés L. Luis JG. Phytochemistry  1993,  34:  1493 
  • 1d Ulubelen A. Topcu G. Eris C. Sonmez U. Kartal M. Kurucu S. Bozok-Johansson C. Phytochemistry  1994,  36:  971 
  • 1e Tada M. Chiba K. Okuno K. Ohnishi E. Yoshii T. Phytochemistry  1994,  35:  539 
  • 1f Batista O. Simoes MF. Duarte A. Valdivia ML. De La Torre MC. Rodriguez B. Phytochemistry  1995,  38:  167 
  • 1g Dellar JE. Cole MD. Waterman PG. Phytochemistry  1996,  41:  735 
  • 1h Ulubelen A. Sonmez U. Topcu G. Bozok-Johansson C. Phytochemistry  1996,  42:  145 
  • 1i Gao J. Han G. Phytochemistry  1997,  44:  759 
  • 1j Marrero JG. Andres LS. Luis JG. J. Nat. Prod.  2002,  65:  986 
  • 2 Tan N. Kaloga M. Radtke OA. Kiderlen AF. Oksuz S. Ulubelen A. Kolodziej H. Phytochemistry  2002,  61:  881 
  • 3a Alvarez-Manzaneda EJ. Chahboun R. Bentaleb F. Cabrera Torres E. Alvarez E. Haidour A. Ramos López JM. Alvarez-Manzaneda R. El Houssame S. Synlett  2004,  2701 
  • 3b Matsushita Y. Iwakiri Y. Yoshida S. Sugamoto K. Matsui T. Tetrahedron Lett.  2005,  46:  3629 
  • 3c Yajima A. Yamaguchi A. Saitou F. Nukada T. Yabuta G. Tetrahedron  2007,  63:  1080 
  • 4 Kofujita H. Ota M. Taakahashi K. Kawai Y. Hayashi Y. Phytochemistry  2002,  61:  895 
  • 5a Kupchan SM. Karim A. Marcks C. J. Org. Chem.  1969,  34:  3912 
  • 5b Kupchan SM. Karim A. Marcks C. J. Am. Chem. Soc.  1968,  90:  5924 
  • 6 Haslinger E. Michl G. Tetrahedron Lett.  1988,  29:  5751 
  • 7a Gil RR. Cordell GA. J. Nat. Prod.  1994,  57:  181 
  • 7b Lin LZ. Blasko G. Cordell GA. Phytochemistry  1989,  28:  177 
  • 8 Arihara S. Umeyama A. Bando S. Imoto S. Ono M. Tani M. Yoshikawa K. Chem. Pharm. Bull.  2004,  52:  354 
  • 9 Cambie RC. Cox RE. Sidwell D. Phytochemistry  1984,  23:  333 
  • 10 Takei M. Umeyama A. Arihara S. Biochem. Biophys. Res. Commun.  2005,  337:  730 
  • 11 Harring SR. Livinghouse T. Tetrahedron Lett.  1989,  30:  1499 
  • 12a Engler TA. Sampath U. Naganathan S. Vander Velde D. Takusagawa F. J. Org. Chem.  1989,  54:  5712 
  • 12b Zambrano JL. Rosales V. Nakano T. Tetrahedron Lett.  2003,  44:  1859 
  • 13a Banik BK. Ghosh S. Ghatak VR. Tetrahedron  1988,  44:  6947 
  • 13b Majetich G. Siesel D. Synlett  1995,  559 
  • 13c Majetich G. Liu S. Fang J. Siesel D. Zhang Y. J. Org. Chem.  1997,  62:  6928 
  • 13d Tada M. Nishiiri S. Zhixiang Y. Imai Y. Tajima S. Okazaki N. Kitano Y. Chiba K. J. Chem. Soc., Perkin Trans. 1  2000,  2657 
  • 14 Shishido K. Got K. Miyoshi S. Takaishi Y. Shibuya M. J. Org. Chem.  1994,  59:  406 
  • 15 Bhar SS. Ramana MMV. J. Org. Chem.  2004,  69:  8935 
  • 16 Bendell JG. Cambie RC. Rutledge PS. Woodgate PD. Aust. J. Chem.  1993,  46:  1825 
  • 17a Tahara A. Akita H. Chem. Pharm. Bull.  1975,  23:  197 
  • 17b Gigante B. Santos C. Silva AM. Curto MJM. Nascimento MSJ. Pinto E. Pedro M. Cerqueira F. Pinto MM. Duarte MP. Laires A. Rueff J. Gonçalves J. Pegado MI. Valdeira ML. Bioorg. Med. Chem.  2003,  11:  1631 
  • 18a Alvarez-Manzaneda E. Chahboun R. Guardia JJ. Lachkar M. Dahdouh A. Lara A. Messouri I. Tetrahedron Lett.  2006,  47:  2577 
  • 18b Alvarez-Manzaneda E. Chahboun R. Cabrera E. Alvarez E. Alvarez-Manzaneda R. Lachkar M. Messouri I. Tetrahedron Lett.  2007,  48:  989 
  • 19 Pascual Teresa J. San Feliciano A. Miguel del Corral JM. Barrero AF. Phytochemistry  1983,  22:  300 
  • 20 Ahond A. Carnero P. Gastambide B. Bull. Soc. Chim. Fr.  1964,  348 
  • 21 The epoxidation of ester 18 to give compounds 19 and 20 was previously described by Barrero et al., who reported a 40% yield for this transformation. See: Barrero AF. Quintana R. Altarejos J. Tetrahedron  1991,  47:  4441 
  • 22 Aldehyde 16 was obtained by the same procedure from the mixture of 12R,13S- and 12S,13R-epoxy derivatives, resulting from the epoxidation of methyl cis-communate. See: Barrero AF. Sánchez JF. Elmerabet J. Jimenez-Gonzalez D. Macías FA. Simonet AM. Tetrahedron  1999,  55:  7289 
  • 23 Snider BB. Patricia JJ. J. Org. Chem.  1989,  54:  38 
24

Typical Procedure for Radical Cyclization
Strictly deoxygenated Ac2O (20 mL) was added to a mixture of manganese(III) acetate dihydrate (3.21 g, 12 mmol) and LiCl (365 mg, 8.6 mmol) under argon atmosphere, and the resulting suspension was stirred at r.t. for 15 min. Then, a solution of β-ketoester (15, 1 g, 2.86 mmol) in deoxygenated Ac2O (20 mL) was added, and the mixture was stirred at reflux for 9 h, at which time TLC showed no starting material. The reaction mixture was cooled to 0 °C, and then quenched with H2O (10 mL). After stirring for 10 min, t-BuOMe (120 mL) was added and the reaction mixture was stirred for an additional 10 min. The mixture was washed with H2O (10 × 30 mL) and brine (3 × 20 mL). The dried organic layer was evaporated and the residue was directly purified by flash chromatography (hexane-t-BuOMe, 7:3) to yield 22 (0.82 g, 74%) as a yellow syrup.

25

Spectroscopic properties of natural terpenoids (10 and 11) were identical to those reported in the literature. All new compounds were fully characterized spectroscopically and had satisfactory high-resolution mass spectroscopy data.
Selected Data
Compound 15: [a]D 25 +13.6 (c 0.9, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.52 (3 H, s), 1.05 (1 H, ddd, J = 13.4, 13.4, 4.1 Hz), 1.14 (1 H, ddd, J = 13.2, 13.2, 4.1 Hz), 1.19 (3 H, s), 1.41 (1 H, dd, J = 12.5, 2.7 Hz), 1.51 (1 H, dt, J = 14.1, 3.1 Hz), 1.59 (1 H, m), 1.77 (1 H, ddd, J = 17.6, 13.4, 4.2 Hz), 1.81 (1 H, dt, J = 13.8, 3,6 Hz), 1.95-2.10 (2 H, m), 2.17 (1 H, br d, J = 12.6 Hz), 2.36-2.44 (2 H, m), 2.61 (1 H, dd, J = 17.5, 3.3 Hz), 2.71 (1 H, dd, J = 17.5, 10.2 Hz), 3.43 (1 H, d, J = 15.4 Hz), 3.47 (1 H, d, J = 15.4 Hz), 3.61 (3 H, s), 3.72 (3 H, s), 4.34 (1 H, br s), 4.77 (1 H, br s). 13C NMR (125 MHz, CDCl3): δ = 38.3 (C-1), 20.1 (C-2), 39.5 (C-3), 44.5 (C-4), 50.7 (C-5), 26.0 (C-6), 38.1 (C-7), 148.5 (C-8), 56.2 (C-9), 39.7 (C-10), 39.8 (C-11), 202.3 (C-12), 49.3 (C-13), 106.8 (C-14), 29.0 (C-15), 177.8 (C-16, COOCH3), 13.1 (C-17), 167.9 (COOCH3), 51.4 (COOCH3), 52.5 (COOCH3).
Compound 22: [a]D 25 +64.5 (c 1.1, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.01 (3 H, s), 1.07 (1 H, ddd, J = 13.6, 13.6, 4.1 Hz), 1.27 (3 H, s), 1.41 (1 H, ddd, J = 13.3, 13.3, 4.1 Hz), 1.51 (1 H, dd, J = 12.2, 1.4 Hz), 1.63 (1 H, m), 1.90-2.07 (2 H, m), 2.18 (1 H, m), 2.28 (1 H, br d, J = 13.7 Hz), 2.31 (3 H, s), 2.77 (1 H, ddd, J = 16.9, 12.7, 6.4 Hz), 2.94 (1 H, dd, J = 16.9, 4.5 Hz), 3.65 (3 H, s), 3.82 (3 H, s), 6.94 (1 H, s), 7.69 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.7 (C-1), 20.0 (C-2), 39.1 (C-3), 44.2 (C-4), 51.5 (C-5), 20.9 (C-6), 31.5 (C-7), 133.6 (C-8), 148.8 (C-9), 39.2 (C-10), 120.8 (C-11), 154.9 (C-12), 120.2 (C-13), 132.7 (C-14), 170.1 (COOCH3), 28.6 (C-16), 177.8 (COOCH3), 23.0 (C-20), 52.2 (COOCH3), 52.3 (COOCH3), 21.2 (OCOCH3), 165.2 (OCOCH3).
Compound 23: [a]D 25 +48.4 (c 0.6, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.00 (3 H, s), 1.06 (1 H, ddd, J = 13.7, 13.7, 4.4 Hz), 1.26 (3 H, s), 1.37 (1 H, ddd, J = 13.2, 13.2, 3.8 Hz), 1.50 (1 H, d, J = 12.1 Hz), 1.63 (3 H, s), 1.66 (3 H, s), 1.86-2.04 (3 H, m), 2.09 (1 H, s), 2.12-2.23 (2 H, m), 2.27 (1 H, d, J = 13.4 Hz), 2.68 (1 H, ddd, J = 16.3, 12.7, 6.0 Hz), 2.79 (1 H, dd, J = 16.3, 4.9 Hz), 3.64 (3 H, s), 6.73 (1 H, s), 6.77 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.9 (C-1), 20.2 (C-2), 39.5 (C-3), 44.2 (C-4), 51.5 (C-5), 21.4 (C-6), 31.6 (C-7), 126.4 (C-8), 149.2 (C-9), 38.5 (C-10), 114.4 (C-11), 153.7 (C-12), 129.0 (C-13), 125.9 (C-14), 75.9 (C-15), 30.5 (C-16), 30.6 (C-17), 28.3 (C-18), 178.2 (C-19), 23.0 (C-20), 53.1 (COOCH3).
Compound 24: [a]D 25 +30.8 (c 0.8, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.77 (6 H, q, J = 7.9 Hz), 1.01 (9 H, t, J = 7.9 Hz), 1.02 (3 H, s), 1.08 (1 H, ddd, J = 14.0, 14.0, 4.1 Hz), 1.18 (3 H, d, J = 6.9 Hz), 1.19 (3 H, d, J = 6.9 Hz), 1.27 (3 H, s), 1.41 (1 H, ddd, J = 13.4, 13.4, 3.9 Hz), 1.54 (1 H, d, J = 12.0 Hz), 1.64 (1 H, br d, J = 14.0 Hz), 1.90-2.01 (2 H, m), 2.13 (1 H, br d, J = 14.1 Hz), 2.17 (1 H, dd, J = 13.6, 5.7 Hz), 2.28 (1 H, br d, J = 13.4 Hz), 2.73 (1 H, ddd, J = 16.3, 12.6, 5.9 Hz), 2.83 (1 H, dd, J = 16.3, 5.0 Hz), 3.21 (1 H, sept, J = 6.9 Hz), 3.66 (3 H, s), 6.65 (1 H, s), 6.82 (1 H, s). 13C NMR (125 MHz, CDCl3): δ = 37.9 (C-1), 20.3 (C-2), 39.7 (C-3), 44.2 (C-4), 51.4 (C-5), 21.5 (C-6), 31.6 (C-7), 127.6 (C-8), 146.1 (C-9), 38.3 (C-10), 115.1 (C-11), 151.2 (C-12), 136.2 (C-13), 126.6 (C-14), 26.9 (C-15), 23.0 (C-16), 23.1 (C-17), 28.7 (C-18), 178.1 (C-19), 23.2 (C-20), 53.0 (COOCH3), 5.7 (SiCH2CH3), 7.0 (SiCH2CH3).
Compound 25: [a]D 25 +72.6 (c 0.6, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.01 (3 H, s), 1.07 (1 H, ddd, J = 13.6, 13.6, 4.1 Hz), 1.22 (3 H, d, J = 6.9 Hz), 1.23 (3 H, d, J = 6.9 Hz), 1.26 (3 H, s), 1.39 (1 H, ddd, J = 13.3, 13.3, 4.1 Hz), 1.52 (1 H, d, J = 12.1 Hz), 1.61 (1 H, m), 1.80-2.05 (2 H, m), 2.16 (2 H, m), 2.27 (1 H, br d, J = 13.3 Hz), 2.71 (1 H, ddd, J = 16.4, 12.7, 5.9 Hz), 2.83 (1 H, dd, J = 16.4, 5.3 Hz), 3.11 (1 H, sept, J = 6.9 Hz), 3.65 (3 H, s), 4.54 (1 H, br s), 6.63 (1 H, s), 6.83 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.9 (C-1), 20.2 (C-2), 39.6 (C-3), 44.2 (C-4), 51.4 (C-5), 21.4 (C-6), 31.6 (C-7), 127.7 (C-8), 146.7 (C-9), 38.4 (C-10), 112.2 (C-11), 151.1 (C-12), 132.0 (C-13), 126.9 (C-14), 27.0 (C-15), 22.7 (C-16), 22.9 (C-17), 28.9 (C-18), 178.2 (C-19), 23.1 (C-20), 53.0 (COOCH3).
Compound 26: 1H NMR (400 MHz, CDCl3): δ = 0.80 (6 H, q, J = 7.9 Hz), 1.01 (9 H, t, J = 7.9 Hz), 1.08 (3 H, s), 1.13 (1 H, ddd, J = 13.6, 13.6, 4.1 Hz), 1.19 (3 H, d, J = 6.9 Hz), 1.21 (3 H, d, J = 6.9 Hz), 1.25 (3 H, s), 1.51 (1 H, ddd, J = 13.3, 13.3, 4.1 Hz), 1.60 (1 H, m), 1.70 (1 H, br d, J = 14.2 Hz), 2.03 (2 H, m), 2.20 (1 H, br d, J = 12.8 Hz), 2.31 (1 H, br d, J = 13.6 Hz), 2.92 (1 H, dd, J = 17.5, 2.1 Hz), 3.13 (1 H, dd, J = 17.5, 14.6 Hz), 3.21 (1 H, sept, J = 6.9 Hz), 3.69 (3 H, s), 6.72 (1 H, s), 7.91 (1 H, s). 13C NMR (125 MHz, CDCl3): δ = 37.7 (C-1), 19.9 (C-2), 38.7 (C-3), 44.1 (C-4), 50.5 (C-5), 37.7 (C-6), 197.3 (C-7), 137.7 (C-8), 154.2 (C-9), 38.5 (C-10), 113.8 (C-11), 158.8 (C-12), 128.2 (C-13), 126.1 (C-14), 27.2 (C-15), 22.6 (C-16), 22.7 (C-17), 28.2 (C-18), 177.3 (C-19), 21.5 (C-20), 53.0 (COOCH3), 5.6 (SiCH2CH3), 6.8 (SiCH2CH3).
Compound 28: [a]D 25 +36.0 (c 0.4, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.02 (3 H, s), 1.07 (1 H, ddd, J = 13.6, 13.6, 4.2 Hz), 1.18 (3 H, d, J = 6.9 Hz), 1.19 (3 H, d, J = 6.8 Hz), 1.27 (3 H, s), 1.39 (1 H, ddd, J = 13.4, 13.4, 3.8 Hz), 1.53 (1 H, d, J = 12.1 Hz), 1.60 (1 H, br d, J = 14.2 Hz), 1.90-2.05 (2 H, m), 2.13-2.21 (2 H, m), 2.28 (1 H, m), 2.29 (3 H, s), 2.77 (1 H, ddd, J = 16.7, 12.7, 6.2 Hz), 2.88 (1 H, dd, J = 16.7, 5.9 Hz), 2.91 (1 H, sept, J = 6.8 Hz), 3.65 (3 H, s), 6.65 (1 H, s), 6.84 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.8 (C-1), 20.1 (C-2), 39.5 (C-3), 44.2 (C-4), 51.4 (C-5), 21.2 (C-6), 31.8 (C-7), 133.4 (C-8), 146.5 (C-9), 38.5 (C-10), 119.3 (C-11), 146.9 (C-12), 137.2 (C-13), 127.2 (C-14), 27.4 (C-15), 23.1 (C-16), 23.2 (C-17), 28.7 (C-18), 178.0 (C-19), 23.2 (C-20), 52.7 (COOCH3), 21.1 (OCOCH3), 170.1 (OCOCH3).
Compound 29: [a]D 25 +53.3 (c 0.9, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.11 (3 H, s), 1.20 (3 H, d, J = 6.8 Hz), 1.22 (3 H, d, J = 6.8 Hz), 1.25 (3 H, s), 1.53 (1 H, ddd, J = 13.1, 13.1, 4.1 Hz), 1.68 (1 H, m), 1.98 (1 H, dt, J = 10.6, 3.6 Hz), 2.06 (1 H, dd, J = 14.5, 3.3 Hz), 2.26 (1 H, br d, J = 14.6 Hz), 2.33 (3 H, s), 2.98 (1 H, m), 2.97 (1 H, ddd, J = 17.9, 6.7, 3.3 Hz), 3.00 (1 H, sept, J = 6.8 Hz), 3.21 (1 H, dd, J = 17.9, 14.5 Hz), 3.69 (3 H, s), 7.02 (1 H, s), 8.01 (1 H, s). 13C NMR (100 MHz, CDCl3): δ = 37.7 (C-1), 19.7 (C-2), 38.6 (C-3), 44.1 (C-4), 50.3 (C-5), 37.6 (C-6), 198.2 (C-7), 139.0 (C-8), 153.0 (C-9), 38.7 (C-10), 119.1 (C-11), 153.6 (C-12), 128.9 (C-13), 126.5 (C-14), 27.3 (C-15), 22.9 (C-16), 23.0 (C-17), 27.5 (C-18), 177.2 (C-19), 21.6 (C-20), 51.8 (COOCH3), 177.2 (COOCH3), 21.2 (OCOCH3), 169.3 (OCOCH3).