RSS-Feed abonnieren
DOI: 10.1055/s-2007-984535
A Facile Anchoring of the Bisphosphonate Moiety into Alcohols and Phenols through Copper Carbenoid Mediated O-H Insertion Reaction
Publikationsverlauf
Publikationsdatum:
27. Juni 2007 (online)
Abstract
A straightforward procedure ensuring the anchoring of bisphosphonate moiety into alcohols or phenols is described. The method uses a bisphosphonate-metal-carbenoid O-H insertion reaction for which copper(II) triflate was found to be an efficient catalyst.
Key words
carbenoids - insertions - copper - rhodium - phosphorus
-
1a
Widler L.Jaeggi KA.Glatt M.Müller K.Bachmann R.Bisping M.Born AR.Corseti R.Guiglia G.Jeker H.Klein R.Ramseier U.Schmid J.Schreiber G.Seltenmeyer Y.Green JR. J. Med. Chem. 2002, 45: 3721 -
1b
Rodan GA. Annu. Rev. Pharmacol. Toxicol. 1998, 38: 375 -
1c
Prestwood KM.Pilbeam CC.Raisz LG. Annu. Rev. Med. 1995, 46: 249 -
1d
Mundy GR. Annu. Rev. Med. 2002, 53: 337 - 2
Russel RGG.Rogers MJ. Br. J. Rheumatol. 1997, 36: 10 ; Suppl. 1 -
3a
Pecherstorfer M.Herrmann Z.Body J.-J.Manegold C.Degardin M.Clemens MR.Thurlimann B.Tubiana-Hulin M.Steinhauer EU. J. Clin. Oncol. 1996, 14: 268 -
3b
Clezardin P.Fournier P.Boissier S.Peyruchaud O. Curr. Med. Chem. 2003, 10: 173 -
3c
Guenin E.Ledoux D.Oudar O.Lecouvet M.Kraemer M. Anticancer Res. 2005, 25: 1139 -
3d
Wilheim M.Kunzman V.Eckstein S.Reimer P.Weissinger F.Ruediger T.Tony HP. Blood 2003, 102: 200 - 4
Kubicek V.Rudocsky J.Kotek J.Hermann P.Vander Elst L.Muller RN.Kollar ZI.Wolterbeek HThh.Peters JA.Lukes I. J. Am. Chem. Soc. 2005, 127: 16477 -
5a
Wang L.Yang Z.Gao J.Xu K.Gu H.Zhang B.Zhang X.Xu B. J. Am. Chem. Soc. 2006, 128: 13358 -
5b
Sawicki M.Siaugue JM.Jacopin C.Moulin C.Bailly T.Burgada R.Meunier S.Baret P.Pierre JL.Taran F. Chem. Eur. J. 2005, 11: 3689 -
5c
Challeix V.Lecouvey M. Tetrahedron Lett. 2007, 48: 703 -
5d
Burgada R.Bailly T.Prangé T.Lecouvey M. Tetrahedron Lett. 2007, 26: 2315 -
6a
Sturz G.Appéré G.Breistol K.Fodstad O.Schwartsmann G.Hendriks HR. Eur. J. Med. Chem. 1992, 27: 825 -
6b
Herczegh P.Buxton YB.McPherson JC.Kovacs-Kulyassa A.Brewer PD.Sztaricskai F.Stroebel GG.Plowman KM.Farcasiu D.Hartmann JF. J. Med. Chem. 2002, 45: 2338 -
6c
Kultyshev RG.Liu J.Liu S.Tjarks W.Soloway AH.Shore SG. J. Am. Chem. Soc. 2002, 124: 2614 -
6d
Gil C.Han Y.Opas EE.Rodan GA.Ruel RJ.Seedor JG.Tyler PC.Young RN. Bioorg. Med. Chem. 1999, 7: 901 -
7a
Mallard I.Benech JM.Lecouvey M.Leroux Y. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 162: 15 -
7b
Gouault-Bironneau S.Deprèle S.Sutor A.Montchamp J.-P. Org. Lett. 2005, 7: 5909 -
7c
Lecouvey M.Mallard I.Bailly T.Burgada R.Leroux Y. Tetrahedron Lett. 2001, 42: 8475 -
7d
Guenin E.Degache E.Liquier J.Lecouvey M. Eur. J. Org. Chem. 2004, 2983 -
7e
Stepinski DC.Nelson DW.Zalupski PR.Herlinger AW. Tetrahedron 2001, 57: 8637 -
7f
Migianu E.Guénin E.Lecouvey M. Synlett 2005, 425 -
7g
Ruzziconi R.Ricci G.Gioiello A.Couthon-Gourvès H.Gourvès J.-P. J. Org. Chem. 2003, 68: 736 -
7h
Migianu E.Mallard I.Bouchemal N.Lecouvey M. Tetrahedron Lett. 2004, 45: 4511 - 8
Lecerclé D.Sawicki M.Taran F. Org. Lett. 2006, 8: 4283 -
9a
Haigh D. Tetrahedron 1994, 50: 3177 -
9b
Wood HB.Buser H.-P.Ganem B. J. Org. Chem. 1992, 57: 178 -
10a
Wong FM.Wang J.Hengge AC.Wu W. Org. Lett. 2007, 9: 1663 -
10b
Nowlan DT.Gregg TM.Davies HML.Singleton DA. J. Am. Chem. Soc. 2003, 125: 15902 -
11a
Cox GG.Kulagowski JJ.Moody CJ.Sie E.-BHB. Synlett 1992, 975 -
11b
Cox GG.Miller DJ.Moody CJ.Sie E.-BHB. Tetrahedron 1994, 50: 3195 - For examples of the use of Cu(OTf)2 in organic synthesis, see:
-
12a
Jones S.Smanmoo C. Org. Lett. 2005, 7: 3271 -
12b
Bayer A.Endeshaw MM.Gautun OR. J. Org. Chem. 2004, 69: 7198 -
12c
Endeshaw MM.Bayer A.Hansen LK.Gautun O. Eur. J. Org. Chem. 2006, 5249 -
12d
Hertweck C. J. Prakt. Chem. 2000, 342: 316
References and Notes
General Procedure
To a solution of diazo bisphosphonate 1a (100 mg, 0.318 mmol) and alcohol (0.350 mmol) in 6 mL of anhyd toluene was added Cu(OTf)2 (1.2 mg, 0.003 mmol). The mixture was heated under reflux for 8 or 12 h and then evaporated under reduced pressure. The residue was purified directly by flash chromatography on silica column (acetone-CH2Cl2, 1:1) to afford the desired product.
All new compounds have been characterized by 1H NMR, 13C NMR, 31P NMR, IR, and mass spectroscopy.
Selected Data:
Compound 5b: 1H NMR (400 MHz, CDCl3): δ = 1.29 (t, J = 7.2 Hz, 6 H), 1.31 (t, J = 7.2 Hz, 6H), 4.04 (t, J = 17.8 Hz, 1 H), 4.08-4.20 (m, 8 H), 4.80 (s, 2 H), 7.26-7.38 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.32-16.41 (m), 63.16 (d, J = 3.0 Hz), 63.19 (d, J = 3.0 Hz), 63.31 (d, J = 3.0 Hz), 63.34 (d, J = 3.0 Hz), 71.50 (t, J = 157.0 Hz), 75.58 (t, J = 5.0 Hz), 128.16, 1128.26, 128.67, 136.34 ppm. 31P NMR (160 MHz, CDCl3): δ = 16.09 (s, 2 P) ppm. MS (ESI/TOF): m/z = 395 [M + H]+.
Compound 5c: 1H NMR (400 MHz, CDCl3): δ = 1.29 (t, J = 7.2 Hz, 6 H), 1.32 (t, J = 7.2 Hz, 6 H), 4.18-4.30 (m, 8 H), 4.89 (t, J = 17.8 Hz, 1 H), 4.80 (s, 2 H), 7.02 (t, J = 7.6 Hz, 1 H), 7.09 (d, J = 7.6 Hz, 2 H), 7.29 (t, J = 7.6 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.26 (d, J = 2.9 Hz), 16.29 (d, J = 2.9 Hz), 16.36 (d, J = 2.9 Hz), 16.39 (d, J = 2.9 Hz), 63.50 (d, J = 3.2 Hz), 63.53 (d, J = 3.2 Hz), 63.87 (d, J = 3.2 Hz), 63.90 (d, J = 3.2 Hz), 72.35 (t, J = 157.0 Hz), 116.23, 122.64, 129.45, 158.71 (t, J = 4.5 Hz) ppm. 31P NMR (160 MHz, CDCl3): δ = 14.51 (s, 2 P) ppm. MS (ESI/TOF): m/z = 381 [M + H]+.
Compound 5d: 1H NMR (400 MHz, CDCl3): δ = 1.30 (t, J = 6.8 Hz, 12 H), 4.06-4.25 (m, 11 H), 5.19-5.30 (m, 2 H), 5.79-5.88 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.24-16.31, 63.29 (d, J = 3.0 Hz), 63.32 (d, J = 3.0 Hz), 63.52 (d, J = 3.0 Hz), 63.55 (d, J = 3.0 Hz), 70.87 (t, J = 157.0 Hz), 74.72 (t, J = 4.7 Hz), 119.19, 133.13 ppm. 31P NMR (160 MHz, CDCl3): δ = 16.29 (s, 2 P) ppm. MS (ESI/TOF): m/z = 345 [M + H]+.
Compound 5e: 1H NMR (400 MHz, CDCl3): δ = 1.31 (t, J = 7.2 Hz, 6 H), 1.32 (t, J = 7.2 Hz, 6 H), 4.10 (t, J = 17.2 Hz, 1 H), 4.10-4.24 (m, 8 H), 4.77 (s, 2 H), 6.34 (dd, J = 3.2, 1.2 Hz, 1 H), 6.40 (d, J = 3.2 Hz, 1 H), 7.41 (d, J = 1.2 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.30-16.41 (m), 63.17 (d, J = 3.0 Hz), 63.20 (d, J = 3.0 Hz), 63.42 (d, J = 3.0 Hz), 63.46 (d, J = 3.0 Hz), 66.11 (t, J = 5.2 Hz), 70.15 (t, J = 157.0 Hz), 110.35, 111.47, 143.37, 149.92 ppm. 31P NMR (160 MHz, CDCl3): δ = 15.93 (s, 2 P) ppm. HRMS: m/z calcd for C14H26O8P2Na: 407.1001; found: 407.1014.
Compound 5f: 1H NMR (400 MHz, CDCl3): δ = 0.79 (s, 3 H), 1.15 (s, 3 H), 1.23-1.29 (m, 2 H), 1.31 (t, J = 7.2 Hz, 6 H), 1.32 (t, J = 7.2 Hz, 6 H), 1.58 (m, J = 8.0 Hz, 1 H), 1.67-1.76 (m, 2 H), 1.80-1.82 (m, 1 H), 1.86-1.88 (m, 1 H), 1.96-1.99 (m, 1 H), 2.28 (qt, J = 7.6 Hz, 1 H), 3.51 (d, J = 7.2 Hz, 2 H), 3.85 (t, J = 17.8 Hz, 1 H), 4.10-4.21 (m, 8 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.30-16.41 (m), 18.08, 20.04, 23.44, 23.96, 26.52, 35.97, 38.97, 40.74, 42.22, 62.97-63.17 (m), 73.47 (t, J = 157.0 Hz), 79.15 (t, J = 4.3 Hz) ppm. 31P NMR (160 MHz, CDCl3): δ = 16.21 (s, 2 P) ppm. MS (ESI/TOF): m/z = 441 [M + H]+.
Compound 5h: 1H NMR (400 MHz, CDCl3): δ = 1.27-1.34 (m, 15 H), 1.41 (s, 3 H), 3.85 (dd, J = 18.0 16.0 Hz, 1 H), 3.96-4.03 (m, 2 H), 4.06-4.22 (m, 8 H), 4.59 (s, 1 H), 4.77 (d, J = 5.6 Hz, 1 H), 4.80 (d, J = 5.6 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.66-16.78 (m), 23.91, 27.06, 63.67 (d, J = 6.6 Hz), 63.79 (d, J = 6.6 Hz), 64.02 (d, J = 6.6 Hz), 73.50 (dd, J = 3.7, 5.7 Hz), 73.89 (t, J = 157.0 Hz), 75.80, 78.39, 80.82, 113.48, 174.38 ppm. 31P NMR (160 MHz, CDCl3): δ = 14.41 (d, J = 28 Hz, 1 P), 15.89 (d, J = 28 Hz, 1 P) ppm. HRMS: m/z calcd for C17H32O11P2Na: 497.1318; found: 497.1326.
Compound 5i: 1H NMR (400 MHz, CDCl3): δ = 1.23 (t, J = 7.2 Hz, 6 H), 1.26 (t, J = 7.2 Hz, 6 H), 3.08 (s, 3 H), 3.65 (t, J = 5.4 Hz, 2 H), 3.89 (t, J = 18.0 Hz, 1 H), 3.95 (t, J = 5.4 Hz, 2 H), 4.06-4.18 (m, 8 H), 6.69 (d, J = 8.8 Hz, 2 H), 7.67 (d, J = 8.8 Hz, 2 H), 9.68 (s, 1 H) ppm 13C NMR (100 MHz, CDCl3): δ = 16.30-16.35 (m), 39.03, 51.68, 63.18-63.32 (m), 71.97 (t, J = 4.5 Hz), 73.53 (t, J = 157.0 Hz), 110.93, 125.21, 131.90, 153.36, 190.09 ppm. 31P NMR (160 MHz, CDCl3): δ = 15.72 (s, 2 P) ppm. MS (ESI/TOF): m/z = 466 [M + H]+.
Compound 5j: 1H NMR (400 MHz, CDCl3): δ = 1.32 (t, J = 7.2 Hz, 12 H), 1.56 (s, 6 H), 1.64 (s, 3 H), 1.91-1.95 (m, 2 H), 1.99-2.10 (m, 6 H), 3.99 (t, J = 17.6 Hz, 1 H), 4.16-4.26 (m, 8 H), 4.30 (d, J = 7.2 Hz, 2 H), 5.03-5.08 (m, 2 H), 5.30 (t, J = 7.2 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 15.86, 16.33-16.41 (m), 17.56, 25.58, 26.21, 26.60, 39.58, 63.06 (d, J = 3.0 Hz), 63.09 (d, J = 3.0 Hz), 63.28 (d, J = 3.0 Hz), 63.31 (d, J = 3.0 Hz), 69.90 (t, J = 4.7 Hz), 70.62 (t, J = 157.0 Hz), 119.28, 123.54, 124.17, 131.19, 135.33, 142.83 ppm. 31P NMR (160 MHz, CDCl3): δ = 16.52 (s, 2 P) ppm. MS (ESI/TOF): m/z = 509 [M + H]+.
Compound 5k: 1H NMR (400 MHz, CDCl3): δ = 1.30 (t, J = 7.2 Hz, 6 H), 1.31 (t, J = 7.2 Hz, 6 H), 4.19-4.34 (m, 8 H), 4.89 (t, J = 17.2 Hz, 1 H), 7.15 (d, J = 8.8 Hz, 2 H), 7.29 (t, J = 7.4 Hz, 2 H), 7.39 (t, J = 7.4 Hz, 2 H), 7.50 (d, J = 8.6 Hz, 2 H), 7.52 (d, J = 7.4 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.30 (d, J = 3.0 Hz), 16.33 (d, J = 3.0 Hz), 16.39 (d, J = 3.0 Hz), 16.41 (d, J = 3.0 Hz), 63.54 (d, J = 3.0 Hz), 63.57 (d, J = 3.0 Hz), 63.87 (d, J = 3.0 Hz), 63.90 (d, J = 3.0 Hz), 72.55 (t, J = 157.0 Hz), 116.51, 126.71, 126.91, 128.09, 128.68, 135.70, 140.30, 158.25 (t, J = 4.5 Hz) ppm. 31P NMR (160 MHz, CDCl3): δ = 14.41 (s, 2 P) ppm. MS (ESI/TOF): m/z = 457 [M + H]+.
Compound 5m: 1H NMR (400 MHz, CDCl3): δ = 1.33 (t, J = 7.2 Hz, 12 H), 3.55 (s, 3 H), 3.56-3.72 (m, 176.0 H), 3.79 (t, J = 4.8 Hz, 2 H), 3.91 (t, J = 4.8 Hz, 2 H), 4.08 (t, J = 17.6 Hz, 1 H), 4.18-4.26 (m, 8 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 16.4-16.44 (m), 58.96, 63.23 (d, J = 3.0 Hz), 63.26 (d, J = 3.0 Hz), 63.33 (d, J = 3.0 Hz), 63.36 (d, J = 3.0 Hz), 70.31-70.62 (m), 71.84, 73.43 (t, J = 157.0 Hz) ppm. 31P NMR (160 MHz, CDCl3): δ = 15.99 (s, 2 P) ppm.