References and Notes
For reviews concerning organcatalysis, see:
<A NAME="RG13407ST-1A">1a</A>
Dalko PI.
Moisan L.
Angew. Chem. Int. Ed.
2004,
43:
5238 ; Angew. Chem. 2004, 39, 5248
<A NAME="RG13407ST-1B">1b</A>
Berkessel A.
Gröger H.
Asymmetric Organocatalysis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RG13407ST-1C">1c</A>
Seayad J.
List B.
Org. Biomol. Chem.
2005,
3:
719
<A NAME="RG13407ST-1D">1d</A>
Ramón DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602 ; Angew. Chem. 2005, 117, 1628
For examples and reviews of asymmetric organocatalytic domino reactions, see:
<A NAME="RG13407ST-2A">2a</A>
Lelais G.
MacMillan DWC.
Aldrichimica Acta
2006,
39:
79
<A NAME="RG13407ST-2B">2b</A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570 ; Angew. Chem.; 2007, 119: 1590
<A NAME="RG13407ST-2C">2c</A>
Yamamoto Y.
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
5962
<A NAME="RG13407ST-2D">2d</A>
Huang Y.
Walji AM.
Larsen CH.
MacMillan DWC.
J. Am. Chem. Soc.
2005,
127:
15051
<A NAME="RG13407ST-2E">2e</A>
Marigo M.
Bertelsen S.
Landa A.
Jørgensen KA.
J. Am. Chem. Soc.
2006,
128:
5475
<A NAME="RG13407ST-2F">2f</A>
Marigo M.
Jørgensen KA.
Chem. Commun.
2006,
2001
<A NAME="RG13407ST-2G">2g</A>
Wang W.
Li H.
Wang J.
Zu LS.
J. Am. Chem. Soc.
2006,
128:
10354
<A NAME="RG13407ST-2H">2h</A>
Rueping M.
Azap C.
Angew. Chem. Int. Ed.
2006,
45:
7832 ; Angew. Chem. 2006, 118, 7996
<A NAME="RG13407ST-2I">2i</A>
Carlone A.
Cabrera S.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2007,
46:
1101 ; Angew. Chem. 2007, 119, 1119
<A NAME="RG13407ST-2J">2j</A>
Li H.
Wang J.
E-Nunu T.
Zu LS.
Jiang W.
Wei S.
Wang W.
Chem. Commun.
2007,
507
<A NAME="RG13407ST-2K">2k</A>
Wang BM.
Wu FH.
Wang Y.
Liu XF.
Deng L.
J. Am. Chem. Soc.
2007,
129:
768
<A NAME="RG13407ST-2L">2l</A>
Zu LS.
Wang J.
Li H.
Xie HX.
Jiang W.
Wang W.
J. Am. Chem. Soc.
2007,
129:
1036
<A NAME="RG13407ST-3">3</A> For a review concerning the application of organocatalysis to natural product
synthesis, see:
de Figueiredo RM.
Christmann M.
Eur. J. Org. Chem.
2007,
in press
<A NAME="RG13407ST-4A">4a</A>
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
<A NAME="RG13407ST-4B">4b</A>
Enders D.
Hüttl MRM.
Runsink J.
Raabe G.
Wendt B.
Angew. Chem. Int. Ed.
2007,
46:
467 ; Angew. Chem. 2007, 119, 471
For reviews of organocatalytic Michael additions of stabilized carbon nucleophiles,
including nitroalkanes, to enals and enones, see:
<A NAME="RG13407ST-5A">5a</A>
Ballini R.
Bosica G.
Fiorini D.
Palmieri A.
Petrini M.
Chem. Rev.
2005,
105:
933
<A NAME="RG13407ST-5B">5b</A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RG13407ST-5C">5c</A>
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
<A NAME="RG13407ST-6A">6a</A>
Wynberg H.
Helder R.
Tetrahedron Lett.
1975,
4057
<A NAME="RG13407ST-6B">6b</A>
Colonna S.
Hiemstra H.
Wynberg H.
J. Chem. Soc., Chem. Commun.
1978,
238
<A NAME="RG13407ST-6C">6c</A>
Matsumoto K.
Uchida T.
Chem. Lett.
1981,
1673
<A NAME="RG13407ST-6D">6d</A>
Latvala A.
Stanchev S.
Linden A.
Hesse M.
Tetrahedron: Asymmetry
1993,
4:
173
<A NAME="RG13407ST-6E">6e</A>
Bakó P.
Szöllõsy A.
Bombicz P.
Tõke L.
Synlett
1997,
291
<A NAME="RG13407ST-6F">6f</A>
Yamaguchi M.
Shiraishi T.
Igarashi Y.
Hirama M.
Tetrahedron Lett.
1994,
35:
8233
<A NAME="RG13407ST-6G">6g</A>
Arai S.
Nakayama K.
Ishida T.
Shioiri T.
Tetrahedron Lett.
1999,
40:
4215
<A NAME="RG13407ST-6H">6h</A>
Corey EJ.
Zhang F.-Y.
Org. Lett.
2000,
2:
4257
<A NAME="RG13407ST-6I">6i</A>
Hanessian S.
Pham V.
Org. Lett.
2000,
2:
2975
<A NAME="RG13407ST-6J">6j</A>
Kim DY.
Huh SC.
Tetrahedron
2001,
57:
8933
<A NAME="RG13407ST-6K">6k</A>
Halland N.
Hazell RG.
Jørgensen KA.
J. Org. Chem.
2002,
67:
8331
<A NAME="RG13407ST-6L">6l</A>
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
661 ; Angew. Chem. 2003, 115, 685
<A NAME="RG13407ST-6M">6m</A>
Halland N.
Hansen T.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
4955 ; Angew. Chem. 2003, 115, 5105
<A NAME="RG13407ST-6N">6n</A>
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Kalikhevich VN.
Eur. J. Org. Chem.
2004,
4014
<A NAME="RG13407ST-6O">6o</A>
Tsogoeva SB.
Jagtap SB.
Synlett
2004,
2624
<A NAME="RG13407ST-6P">6p</A>
Hanessian S.
Govindan S.
Warrier JS.
Chirality
2005,
17:
540
<A NAME="RG13407ST-6Q">6q</A>
Vakulya B.
Varga S.
Csámpai A.
Soós T.
Org. Lett.
2005,
7:
1967
<A NAME="RG13407ST-6R">6r</A>
Prieto A.
Halland N.
Jørgensen KA.
Org. Lett.
2005,
7:
3897
<A NAME="RG13407ST-6S">6s</A>
Ooi T.
Takada S.
Fujioka S.
Maruoka K.
Org. Lett.
2005,
7:
5143
<A NAME="RG13407ST-6T">6t</A>
Mitchell CET.
Brenner SE.
Ley SV.
Chem. Commun.
2005,
5346
<A NAME="RG13407ST-6U">6u</A>
Tsogoeva SB.
Jagtap SB.
Ardemasova ZA.
Tetrahedron: Asymmetry
2006,
17:
989
<A NAME="RG13407ST-6V">6v</A>
Brandau S.
Landa A.
Franzén J.
Marigo M.
Jørgensen KA.
Angew. Chem. Int. Ed.
2006,
45:
4305 ; Angew. Chem. 2006, 118, 4411
<A NAME="RG13407ST-6W">6w</A>
Knudsen KR.
Mitchell CET.
Ley SV.
Chem. Commun.
2006,
66
<A NAME="RG13407ST-6X">6x</A>
Mitchell CET.
Brenner SE.
Garcia-Fortanet J.
Ley SV.
Org. Biomol. Chem.
2006,
4:
2039
<A NAME="RG13407ST-6Y">6y</A>
Hanessian S.
Shao Z.
Warrier JS.
Org. Lett.
2006,
8:
4787
<A NAME="RG13407ST-6Z">6z</A>
Hansen HM.
Longbottom DA.
Ley SV.
Chem. Commun.
2006,
4838
For examples of organocatalytic intramolecular aldol reactions with a ketone as electrophile,
see:
<A NAME="RG13407ST-7A">7a</A>
Takano S.
Kasahara C.
Ogasawara K.
Chem. Commun.
1981,
635
<A NAME="RG13407ST-7B">7b</A>
Halland N.
Aburel PS.
Jørgensen KA.
Angew. Chem. Int. Ed.
2004,
43:
1272 ; Angew. Chem.
2004, 116, 1292
<A NAME="RG13407ST-7C">7c</A>
Hechavarria Fonseca MT.
List B.
Angew. Chem. Int. Ed.
2004,
43:
3958 ; Angew. Chem. 2004, 116, 4048
<A NAME="RG13407ST-7D">7d</A>
Enders D.
Niemeier O.
Straver L.
Synlett
2006,
3399
<A NAME="RG13407ST-8">8</A> Both enantiomers of TMS-diphenylprolinol ether 4 are readily available from d- or l-proline in multigram quantities in a four-step synthesis. For a review regarding
the use of this catalyst, see:
Palomo C.
Mielgo A.
Angew. Chem. Int. Ed.
2006,
45:
7876 ; Angew. Chem.
2006, 118, 8042
<A NAME="RG13407ST-9">9</A>
CCDC number 642547 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RG13407ST-10">10</A>
Flack HD.
Acta Crystallogr., Sect. A.
1983,
39:
876
<A NAME="RG13407ST-11">11</A>
All new compounds were fully characterized (mp, optical rotation, NMR, IR, MS, elemental
analysis) and the spectroscopic and analytical data are in agreement with the assigned
structures.
<A NAME="RG13407ST-12">12</A>
General Procedure
To a solution of nitroketone 2 (3.0 mmol) and TMS-ether (S)-4 (0.60 mmol, 20 mol%) in toluene (3.0 mL) was added enal 3 (3.75 mmol, 1.25 equiv) and benzoic acid (20 mol%). The reaction vessel was then
flushed with argon gas, stoppered and stirred at 9 °C for 6-15 d.
Workup A: Direct purification of the reaction mixture by flash chromatography (2:1
pentane-Et2O) afforded cyclohexenes 1.
Workup B: The crude reaction mixture was diluted with CHCl3 (8.0 mL) and heated in the presence of PhCO2H (150 mg) at 65 °C for 2.5 h. Following dilution with Et2O (75 mL), the organic layer was washed with sat. aq NaHCO3 (15 mL) and brine (15 mL), dried (MgSO4), concentrated and purified by flash chromatography (2:1 pentane-Et2O) to afford cyclohexenes 1.11
(5
R
,6
R
)-2-Methyl-5-nitro-6-phenylcyclohex-1-ene Carbaldehyde (1a)
Isolated after 7 d as a pale yellow solid (315 mg, 43%). The ee was determined by
HPLC on a chiral stationary phase (Daicel Chiralpak IA, n-heptane-i-PrOH = 95:5, 1.0 mL/min), t
R = 13.7 min(major), 17.0 min(minor). An analytical sample was prepared by recrystallization
(CH2Cl2-Et2O-hexane, slow evaporation); mp 89 °C; [α]D
24 -347 (c 1.02, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 2.02 (dddd, J = 14.7, 10.3, 7.0, 3.5 Hz, 1 H, CHHCH2), 2.32 (s, 3 H, Me), 2.33-2.60 (m, 3 H, CHHCH
2), 4.67 (dd, J = 7.3, 3.6 Hz, 1 H, CHNO2), 4.80 (br s, 1 H, CHPh), 7.13-7.18 (m, 2 H, o-Ph), 7.22-7.26 (m, 1 H, p-Ph), 7.28-7.34 (m, 2 H, m-Ph), 10.11 (s, 1 H, CHO) ppm. 13C NMR (75 MHz, CDCl3): δ = 18.4 (Me), 20.8 (C-4), 29.6 (C-3), 41.4 (C-6), 85.7 (C-5), 127.4 (p-Ph), 127.9 (o-Ph), 128.9 (m-Ph), 131.1 (ipso-Ph), 140.1 (C-1), 155.7 (C-2), 189.1 (CHO) ppm. IR (KBr): 3061, 3024, 2973, 2891,
1668, 1639, 1544, 1446, 1371, 1236, 759, 702 cm-1. MS (CI, CH4): m/z (%) = 246 (20) [M+ + 1]. Anal. Calcd for C14H15NO3: C, 68.56; H, 6.16; N, 5.71. Found: C, 68.28; H, 6.08; N, 5.53.