RSS-Feed abonnieren
DOI: 10.1055/s-2007-982571
Efficient Oxidative Conversion of Aldehydes to 2-Substituted Oxazolines and Oxazines Using (Diacetoxyiodo)benzene
Publikationsverlauf
Publikationsdatum:
25. Juni 2007 (online)
Abstract
An efficient synthesis of 2-substituted oxazolines from aldehydes and 2-amino alcohol using (diacetoxyiodo)benzene as an oxidant, is reported. (Diacetoxyiodo)benzene acts as a mild dehydrogenating agent to convert the initially formed oxazolidine from aldehyde and 2-amino alcohol to furnish 2-substituted oxazoline. Similarly, 3-aminopropanol and aldehydes gives the corresponding 2-substituted oxazines.
Key-words
hypervalent iodine - oxazolines - oxazines - oxidation - aldehydes
-
1a
Genet JP.Thorimbert S.Touzin AM. Tetrahedron Lett. 1993, 34: 1159 -
1b
Wipf P.Miller CP. J. Am. Chem. Soc. 1992, 114: 10975 -
1c
Li Q.Woods KW.Claiborne A.Gwaltney SL.Barr KJ.Liu G.Gehrke L.Credo RB.Hua Hui Y.Lee J.Warner RB.Kovar P.Nukkala MA.Zielinski NA.Tahir SK.Fitzgerald M.Kim KH.Marsh K.Frost D.Ng S.-C.Rosenberg S.Sham HL. Bioorg. Med. Chem. Lett. 2002, 12: 465 -
1d
Campiani C.de Angelis M.Armaroli S.Fattorusso C.Catalanotti B.Ramunno A.Nacci V.Novellino E.Grewer C.Ionescu D.Rauen T.Griffiths R.Sinclair C.Fumagalli E.Mennini T. J. Med. Chem. 2001, 44: 2507 - 2
Shibamoto T. J. Agric. Food Chem. 1980, 28: 237 -
3a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 2nd ed.: J. Wiley; New York: 1991. -
3b
Kocienski PJ. In Protecting GroupsEnders D.Noyori R.Trost BM. Georg Thieme Verlag; New York: 1994. -
4a
Meyers AI.Lutomski KA. J. Am. Chem. Soc. 1982, 104: 879 -
4b
Meyers AI.Hangan MA.Trefonas LM.Baker RJ. Tetrahedron 1983, 39: 1991 -
4c
Green L.Chauder B.Snieckus V. J. Heterocycl. Chem. 1999, 36: 1453 -
5a
Fache F.Schulz E.Tommasino ML.Lemaire M. Chem. Rev. 2000, 100: 2159 -
5b
Lutomski KA.Meyers AI. In Asymmetric Synthesis Vol. 3:Morisson JD. Academic Press; Orlando: 1984. p.213 -
6a
Hamada Y.Shibata M.Shioiri T. Tetrahedron Lett. 1985, 26: 6501 -
6b
Wenker H. J. Am. Chem. Soc. 1935, 57: 1079 -
6c
Bunnage ME.Chernega AN.Davies SG.Goodwin CJ. J. Chem. Soc., Perkin Trans. 1 1994, 2385 -
6d
Phillips AJ.Uto Y.Wipf P.Reno MJ.Williams DR. Org. Lett. 2000, 2: 1165 -
6e
Wipf P.Miller CP. Tetrahedron Lett. 1992, 33: 907 -
7a
Lowenthal RE.Abiko A.Masamune S. Tetrahedron Lett. 1990, 31: 6005 -
7b
Corey EJ.Wang Z. Tetrahedron Lett. 1993, 34: 4001 -
8a
Bolm C.Weickhardt K.Zehnder M.Ranff T. Chem. Ber. 1991, 124: 1173 -
8b
Clarke DS.Wood R. Synth. Commun. 1996, 26: 1335 -
8c
Jnaneshwara GK.Deshpande VH.Lalithambika M.Ravindranathan T.Bedekar AV. Tetrahedron Lett. 1998, 39: 459 -
8d
Cwik A.Hell Z.Hegedüs A.Finta Z.Horvath Z. Tetrahedron Lett. 2002, 43: 3985 -
8e
Mohammadpoor-Baltork I.Khosropour AR.Hojati HS. Synlett 2005, 2747 -
9a
Neilson DG. In The Chemistry of Amidines and ImidatesPatai S. Wiley; London: 1975. p.389 -
9b
Hoppe D.Schöllkopf U. Angew. Chem., Int. Ed. Engl. 1970, 9: 300 -
10a
Wuts PGM.Northuis JM.Kwan TA. J. Org. Chem. 2000, 65: 9223 -
10b
Wipf P.Venkatraman S. Tetrahedron Lett. 1996, 37: 4659 -
10c
Lafargue P.Guenot P.Lellouche JP. Heterocycles 1995, 41: 497 - 11
Minakata S.Nishimura M.Takahashi T.Oderaotoshi Y.Komatsu M. Tetrahedron Lett. 2001, 42: 9019 - 12
Badiang JG.Aube J. J. Org. Chem. 1996, 61: 2484 - 13
Chakraborty R.Franz V.Bez G.Vasadia D.Popuri C.Zhao C.-G. Org. Lett. 2005, 19: 4145 - 14
Schwekendiek K.Glorius F. Synthesis 2006, 2996 - 15
Sayama S. Synlett 2006, 1479 -
16a
Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656 -
16b
Moriarty RM. J. Org. Chem. 2005, 70: 2893 -
16c
Stang PJ. J. Org. Chem. 2003, 68: 2997 -
16d
Zhdankin VV.Stang P. J. Chem. Rev. 2002, 102: 2523 -
16e
Moriarty RM.Prakash O. Org. React. 2002, 57: 327 - 17
Varvoglis A. Hypervalent Iodine in Organic Synthesis Academic Press; London: 1997. Chap. 3. p.19 -
18a
Karade NN.Tiwari GB.Huple DB. Synlett 2005, 2039 -
18b
Karade NN.Shirodkar SG.Dhoot BM.Waghmare PB. J. Chem. Res., Synop. 2005, 274 -
18c
Karade NN.Tiwari GB.Shirodkar SG.Dhoot BM. Synth. Commun. 2005, 35: 1197 -
18d
Karade NN.Budhewar VH.Katkar AN.Tiwari GB. ARKIVOC 2006, (xi): 162 -
20a
Snieckus V. Chem. Rev. 1990, 90: 879 -
20b
Martinek T.Lazar L.Fulop F.Riddell FG. Tetrahedron 1998, 54: 12887 -
20c
Agami C.Comesse S.Kadouri-Puchot C. J. Org. Chem. 2002, 67: 1496 - 22
Katritzky AR.Cai C.Suzuki K.Singh SK. J. Org. Chem. 2004, 69: 811
References and Notes
Typical Experimental Procedure
A mixture of an aldehyde (1.0 mmol) and an appropriate 2-amino alcohol (1.0 mmol) was stirred for 4 h at r.t. (Diacetoxyiodo)benzene (1.2 mmol) was then added to the above mixture and the resulting reaction mixture was again subjected for stirring for another 3-6 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, H2O (15 mL) was added and the mixture extracted with CH2Cl2 (2 × 15 mL). The combined organic extracts were dried over anhyd Na2SO4, concentrated in vacuo, and chromatographed to give 2-substituted oxazolines/oxazines.
Spectroscopic Data of Selected Products
2-(4-Nitrophenyl)-4,5-dihydrooxazole
Mp 157-159 °C. IR (KBr): 3028, 2971, 2894, 1649, 1602, 1528, 1464, 1349, 1268, 1092, 952, 861, 710 cm-1. 1H NMR (CDCl3): δ = 4.12 (t, J = 9.6 Hz, 2 H), 4.50 (t, J = 9.6 Hz, 2 H), 8.14 (d, J = 8.3 Hz, 2 H), 8.24 (d, J = 8.3 Hz, 2 H). LCMS [M + 1]: m/z = 193.
2-(4-Chlorophenyl)-4,5-dihydrooxazole
Mp 116-118 °C (lit.8d mp 118-119 °C). IR (KBr): 3062, 2964, 2891, 1724, 1638, 1590, 1474, 1280, 1073, 933, 824, 763 cm-1. 1H NMR (CDCl3): δ = 3.72 (t, J = 9.4 Hz, 2 H), 3.97 (t, J = 9.4 Hz, 2 H), 7.40 (d, J = 7.9 Hz, 2 H), 7.68 (d, J = 7.9 Hz, 2 H). LCMS [M + 1]: m/z = 182.
2-(4-Methoxyphenyl)-4,5-dihydrooxazole
Mp 138-139 °C. IR (KBr): 2958, 2849, 1711, 1620, 1505, 1255, 1158, 1024, 842, 775 cm-1. 1H NMR (CDCl3): δ = 3.71 (s, 3 H), 3.76 (t, J = 9.2 Hz, 2 H), 3.91 (t, J = 9.2 Hz, 2 H), 7.49 (d, J = 7.6 Hz, 2 H), 6.87 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 178.
2-(3,4,5-Trimethoxyphenyl)-4,5-dihydrooxazole
Mp 83-85 °C. IR (KBr): 2940, 2849, 1711, 1638, 1584, 1407, 1225, 1128, 988, 769 cm-1. 1H NMR (CDCl3): δ = 3.89 (m, 9 H), 4.07 (t, J = 9.3 Hz, 2 H), 4.43 (t, J = 9.3 Hz, 2 H), 6.97 (s, 1 H), 7.13 (s, 1 H). LCMS [M + 1]: m/z = 238.
2-(4-Tolyl)-4,5-dihydrooxazole
Mp 143-144 °C (lit.8d mp 144-145 °C). IR (KBr): 2928, 2879, 2855, 1650, 1596, 1389, 1286, 1055, 969, 811 cm-1. 1H NMR (CDCl3): δ = 2.46 (s, 3 H), 3.75 (t, J = 9.3 Hz, 2 H), 3.91 (t, J = 9.3 Hz, 2 H), 7.63 (d, J = 7.4 Hz, 2 H), 7.22 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 162.
4-Ethyl-4,5-dihydro-2-(4-methoxyphenyl)oxazole
Liquid. IR (KBr): 3068, 2964, 2873, 2855, 1645, 1489, 1268, 1085, 818 cm-1. 1H NMR (CDCl3): δ = 0.92 (t, J = 9.1 Hz, 3 H), 1.36 (m, 2 H), 3.86 (s, 3 H), 3.97 (d, J = 9.2 Hz, 2 H), 4.14 (m, 1 H), 6.91 (d, J = 7.5 Hz, 2 H), 7.49 (d, J = 7.6 Hz, 2 H). LCMS [M + 1]: m/z = 206.
2-(4-Methoxyphenyl)-5,6-dihydro-4
H
-[1,3]-oxazine
Liquid. IR (KBr): 3012, 2958, 1637, 1602, 1510, 1358, 1307, 1283, 1273, 1256 cm-1. 1H NMR (CDCl3): δ = 1.96 (quin, J = 5.8 Hz, 2 H), 3.58 (t, J = 5.4 Hz, 2 H), 3.81 (s, 3 H), 4.37 (t, J = 5.4 Hz, 2 H), 6.89 (d, J = 9.4 Hz, 2 H), 7.87 (d, J = 9.4 Hz, 2 H). LCMS [M + 1]: m/z = 192.
2-(4-Nitrophenyl)-5,6-dihydro-4
H
-[1,3]-oxazine
Mp 143-144 °C (lit.22 mp 145-146 °C). 1H NMR (CDCl3): δ = 1.99 (quin, J = 5.8 Hz, 2 H), 3.66 (t, J = 5.6 Hz, 2 H), 4.37 (t, J = 5.6 Hz, 2 H), 8.07 (d, J = 9.2 Hz, 2 H), 8.22 (d, J = 9.3 Hz, 2 H). LCMS [M + 1]: m/z = 207.
When the reaction mixture of cinnamaldehyde and 2-amino-2-methyl-1-propanol was stirred in the absence of DIB, the immediate precipitation of 2-styryloxazolidine was observed. This product was recrystallized from PE and subjected to LCMS analysis which showed a molecular ion peak [M + 1] at 204 corresponding to the formation of 4,4-dimethyl-2-styryloxazolidine. The reaction of 4,4-dimethyl-2-styryloxazolidine (1 mmol) with DIB (1.2 mmol) in CHCl3 (10 mL) was independently carried out at r.t. stirring for another 3 h. After usual reaction workup, the formation of 4,5-dihydro-4,4-dimethyl-2-styryloxazole was realized in 38% yield.