Minim Invasive Neurosurg 2007; 50(2): 65-70
DOI: 10.1055/s-2007-982508
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Virtual 3-Dimensional Preoperative Planning with the Dextroscope for Excision of a 4th Ventricular Ependymoma

S. M. Anil 1 , Y. Kato 1 , M. Hayakawa 1 , K. Yoshida 1 , S. Nagahisha 1 , T. Kanno 1
  • 1Department of Neurosurgery, Fujita Health University Hospital, Toyoake, Aichi, Japan
Further Information

Publication History

Publication Date:
03 August 2007 (online)

Abstract

Objective and Importance: Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education.

Clinical Presentation: The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion.

Intervention: Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised.

Conclusion: Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.

References

  • 1 Globe JC, Hinckley K, Pausch R, Snell JW, Kassell NF. Two-handed spatial interface tools for neurosurgical planning.  IEEE Comput. 1995;  28 20-26
  • 2 Green PS, Hill JW, Jensen JF, Shah A. Telepresence surgery.  IEEE Eng Med Biol. 1995;  3 324-329
  • 3 Harbaugh RE, Schlusselberg DS, Jeffery R, Hayden S, Cromwell LD, Pluta D. Three-dimensional computed tomographic angiography in the preoperative evaluation of cerebrovascular lesions.  Neurosurgery. 1995;  36 320-326
  • 4 Kapur T, Grimson WE, Wells III WM, Kikinis R. Segmentation of brain tissue from magnetic resonance images.  Med Image Anal. 1996;  1 109-127
  • 5 Hu X, Tan KK, Levin DN, Galhotra S, Mullan JF, Hekmatpanah J, Spire JP. Three-dimensional magnetic resonance images of the brain: Application to neurosurgical planning.  J Neurosurg. 1990;  72 433-440
  • 6 Krueger W, Bohn CA, Froehlich B, Schueth H, Strauss W, Wesche G. The responsive workbench: A virtual work environment.  IEEE Comput. 1995;  28 42-48
  • 7 Lansky LL, Batnitzky S, Price HI, Cook PN, Dwyer III SJ. Application of three-dimensional computer reconstruction from computerized tomography to intracranial tumors in children.  J Neuroncol. 1983;  1 347-356
  • 8 Maintz JBA, Viergever MA. A survey of medical image registration.  Med Imag Anal. 1998;  2 1-36
  • 9 Levin DN, Pelizzari CA, Chen GT, Chen CT, Cooper MD. Retrospective geometric correlation of MR, CT and PET images.  Radiology. 1988;  169 817-823
  • 10 Levin DN, Hu X, Tan KK, Galhotra S. Surface of the brain: Three-dimensional MR images created with volume rendering.  Radiology. 1989;  171 277-280
  • 11 Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET and MR images of the brain.  J Comput Assist Tomogr. 1989;  13 20-26
  • 12 Poston T, Serra L. Dextrous Virtual work.  Commun ACM. 1996;  39 37-45
  • 13 Robb RA, Hanson DP, Camp JJ. Computer-aided surgery planning and rehearsal at Mayo Clinic.  IEEE Comput. 1996;  29 39-47
  • 14 Salisbury JK, Srinivasan MA. Phantom-based haptic interaction with virtual objects.  IEEE Comput Graph. 1997;  17 6-10
  • 15 Serra L, Poston T, Ng H, Heng PA, Chua BC. Virtual space editing of tagged MRI heart data, in Proceedings of the First International Conference of Computer Vision, Virtual Reality and Robotics in Medicine.  Berlin, Springer. 1995;  71-76
  • 16 Weingaertner T, Hassfeld S, Dillman R. Virtual jaw: A 3D simulation for computer assisted surgery and education. In: Westwood JD, Hoffman HM, Stredney D, Weghorst SJ (eds): Medicine Meets Virtual Reality. Amsterdam, IOS Press 1998: 329-335
  • 17 Zahao J, Colchester ACF, Henri CJ, Hawkes D, Ruff C. Visualisation of multimodal images for neurosurgical planning and guidance. In: Proceedings of the First International Conference of Computer Vision, Virtual Reality and Robotics in Medicine. Berlin, Springer 1995 pp 40-46
  • 18 Krupa P, Novak Z. [Advances in the diagnosis of tumours by imaging methods (possibilities of three-dimensional imaging and application to volumetric resections of brain tumours with evaluation in virtual reality and subsequent stereotactically navigated demarcation) [Article in Czech]. Klinika zobrazovacich metod Fakultni nemo?nice u sv. Anny, Brno.  Vnitr Lek. 2001;  47 527-531
  • 19 Iseki H, Masutani Y, Iwahara M, Tanikawa T, Muragaki Y, Taira T, Dohi T, Takakura K. Planning of skull base surgery in the virtual workbench: clinical experiences.  Stud Health Technol Inform. 1999;  62 187-188
  • 20 Kockro RA, Serra L, Tsai YT, Chan C, Sitoh YY, Chua GG, Hern N, Lee E, Hoe LY, Nowinski W. Kent Ridge Digital Labs, Singapore.  Stereotact Funct Neurosurg. 1997;  68 ((1-4 Pt 1)) 18-24 , Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery
  • 21 Alexander III E, Kooy HM, Herk M van, Schwarz M, Barnes PD, Tarbell N, Mulkern RV, Holupka EJ, Loeffler JS. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy.  J Neurosurg. 1995;  83 271-276
  • 22 Batnitzky S, Price HI, Lee KR, Cook PN, Cook LT, Fritz SL, Dwyer III SJ, Watts C. Three-dimensional computer reconstructions of brain lesions from surface contours provided by computed tomography: a prospectus.  Neurosurgery. 1982;  11 73-84
  • 23 Chalif DJ, Dufrense CR, Ransohoff L, MacCarthy JA. Three-dimensional computed tomographic reconstructions of intracranial meningiomas.  Neurosurgery. 1988;  23 570-575
  • 24 Cline HE, Lorensen WE, Souza SP, Jolez FA, Kikinis R, Gering G, Kennedy TE. 3D surface rendered MR images of the brain and its vasculature.  J Comput Assist Tomogr. 1991;  15 344-351
  • 25 Ehricke HH, Laub G. Integratede 3D display of brain anatomy and intracranial vasculature in MR imaging.  J Comput Assist Tomogr. 1990;  14 846-852
  • 26 Kikinis R, Gleason L, Moriarty TM, Moore MR, Alexander III E, Stieg PE, Matsumae M, Lorensen WE, Cline HE, Black P, Jolesz FA. Computer-assisted interactive three-dimensional planning for neurosurgical procedures.  Neurosurgery. 1996;  38 640-651
  • 27 Vannier MW, Gado MH, Marsh JL. Three-dimensional display of intracranial soft-tissue structures.  AJNR Am J Neuroradiol. 1983;  4 520-521

Correspondence

Dr. Y. Kato

Department of Neurosurgery

Fujita Health University Hospital

1-98 denga kugakubo

Kutsukake

Toyoake

470-1192 Aichi

Japan

Phone: +81/562/93 92 53

Fax: +81/562/93 31 18

Email: kyoko@fujita-hu.ac.jp