Horm Metab Res 2007; 39(6): 457-460
DOI: 10.1055/s-2007-980189
Original

© Georg Thieme Verlag KG Stuttgart · New York

Pam3CSK4 and LTA-TLRs Ligands Associated with Microdomains Induce IL8 Production in Human Adrenocortical Cancer Cells

W. Kanczkowski 1 , H. Morawietz 2 , C. G. Ziegler 1 , R. H. Funk 3 , G. Schmitz 4 , K. Zacharowski 5 , C. E. Mohn 6 , M. Ehrhart-Bornstein 1 , S. R. Bornstein 1
  • 1Medical Clinic III, Medical Faculty Carl Gustav Carus, University of Technology, Dresden, Germany
  • 2Department of Vascular Endothelium and Microcirculation, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Germany
  • 3Institute of Anatomy, Medical Faculty Carl Gustav Carus, University of Technology, Dresden, Germany
  • 4Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany
  • 5Molecular Cardio-protection and Inflammation Group, Department of Anaesthesia, University of Bristol, United Kingdom
  • 6Centro de Estudios Farmacologicos y Botanicos, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
Further Information

Publication History

received 25.8.2006

accepted 27.11.2006

Publication Date:
18 June 2007 (online)

Abstract

Bacterially derived ligands, Pam3CSK4 and LPS, can directly impact adrenal glands steroidogenesis through microdomain-related TLR1/2 and 4, respectively, and indirectly via immune cell-derived cytokines. The bilateral immunoadrenal relationship plays an important role in the proper functioning of both systems. CXC chemokine-dependent immune cell infiltration into adrenocortical carcinomas (ACC), which correlates with poor prognosis, is a common phenomenon. Recently, IL8 was identified in ACC and NCI-H295R cells, and was found to contribute to ACC tumour growth. The aim of this study was to clarify the role of different TLR ligands in IL8 production in NCI-H295R cells. This is the first study to demonstrate the expression of several TLRs including TLR1, 3, 6, 7 and 9 in human adrenocortical cells by using the RT-PCR approach. Only stimulation with TLR1/6 together with TLR2 ligands resulted in IL8 peptide and mRNA induction in a dose and time-dependent manner. Our data suggest that gram-positive bacteria-related TLR1/2/6 ligands might contribute to adrenal gland tumorigenesis via IL8 production.

References

  • 1 Danai P, Martin GS. Epidemiology of sepsis: recent advances.  Curr Infect Dis Rep. 2005;  7 329-334
  • 2 Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T. et al . Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting.  J Biol Chem. 2006;  281 31002-31011
  • 3 O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know.  Curr Opin Immunol. 2006;  18 3-9
  • 4 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity.  Cell. 2006;  124 783-801
  • 5 Bornstein SR, Schumann RR, Rettori V, McCann SM, Zacharowski K. Toll-like receptor 2 and Toll-like receptor 4 expression in human adrenals.  Horm Metab Res. 2004;  36 470-473
  • 6 Bornstein SR, Zacharowski P, Schumann RR, Barthel A, Tran N, Papewalis C. et al . Impaired adrenal stress response in Toll-like receptor 2-deficient mice.  Proc Natl Acad Sci USA. 2004;  101 16695-16700
  • 7 Zacharowski K, Zacharowski PA, Koch A, Baban A, Tran N, Berkels R. et al . Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome.  Proc Natl Acad Sci USA. 2006;  103 6392-6397
  • 8 Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis.  Endocr Rev. 1998;  19 101-143
  • 9 Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs.  N Engl J Med. 2005;  353 1711-1723
  • 10 Schteingart DE, Giordano TJ, Benitez RS, Burdick MD, Starkman MN, Arenberg DA. et al . Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome.  J Clin Endocrinol Metab. 2001;  86 3968-3974
  • 11 Romero DG, Vergara GR, Zhu Z, Covington GS, Plonczynski MW, Yanes LL. et al . Interleukin-8 synthesis, regulation, and steroidogenic role in H295R human adrenocortical cells.  Endocrinology. 2006;  147 891-898
  • 12 Killeen SD, Wang JH, Andrews EJ, Redmond HP. Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword?.  Br J Cancer. 2006;  95 247-252
  • 13 Killeen SD, Wang JH, Andrews EJ, Redmond HP. Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword?.  Br J Cancer. 2006;  95 247-252
  • 14 de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development.  Nat Rev Cancer. 2006;  6 24-37
  • 15 de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development.  Nat Rev Cancer. 2006;  6 24-37
  • 16 Molteni M, Marabella D, Orlandi C, Rossetti C. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4.  Cancer Lett. 2006;  235 75-83
  • 17 Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion.  Nat Rev Immunol. 2006;  6 715-727
  • 18 Urosevic M, Dummer R, Conrad C, Beyeler M, Laine E, Burg G. et al . Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment.  J Natl Cancer Inst. 2005;  97 1143-1153
  • 19 Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH. et al . Toll-like receptors on tumour cells facilitate evasion of immune surveillance.  Cancer Res. 2005;  65 5009-5014
  • 20 Schteingart DE, Giordano TJ, Benitez RS, Burdick MD, Starkman MN, Arenberg DA. et al . Overexpression of CXC chemokines by an adrenocortical carcinoma: a novel clinical syndrome.  J Clin Endocrinol Metab. 2001;  86 3968-3974
  • 21 Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R. et al . The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer.  J Leukoc Biol. 1997;  62 554-562
  • 22 Romero DG, Vergara GR, Zhu Z, Covington GS, Plonczynski MW, Yanes LL. et al . Interleukin-8 synthesis, regulation, and steroidogenic role in H295R human adrenocortical cells.  Endocrinology. 2006;  147 891-898
  • 23 Doyle SL, O'Neill LA. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity.  Biochem Pharmacol. 2006;  72 1102-1113
  • 24 Bornstein SR, Chrousos GP. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs.  J Clin Endocrinol Metab. 1999;  84 1729-1736
  • 25 Vakharia K, Hinson JP. Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism.  Endocrinology. 2005;  146 1398-1402
  • 26 Xie K. Interleukin-8 and human cancer biology.  Cytokine Growth Factor Rev. 2001;  12 375-391
  • 27 Bernini GP, Moretti A, Bonadio AG, Menicagli M, Viacava P, Naccarato AG. et al . Angiogenesis in human normal and pathologic adrenal cortex.  J Clin Endocrinol Metab. 2002;  87 4961-4965
  • 28 Turner HE, Harris AL, Melmed S, Wass JA. Angiogenesis in endocrine tumors.  Endocr Rev. 2003;  24 600-632

Correspondence

S. R. Bornstein

Department of Medicine

Carl Gustav Carus Medical School

University of Technology

01307 Dresden

Germany

Phone: +49/351/458 66 06

Fax: +49/351/458 63 36

Email: stefan.bornstein@uniklinikum-dresden.de