RSS-Feed abonnieren
DOI: 10.1055/s-2007-980131
Medikamentöse Therapie des kleinzelligen Bronchialkarzinoms (SCLC) - neue molekulare Therapieansätze
Drug Therapy for Small-Cell Lung Cancer (SCLC) - New Molecular Strategies for TherapyPublikationsverlauf
eingereicht 1.8.2007
akzeptiert 4.9.2007
Publikationsdatum:
18. Oktober 2007 (online)
Zusammenfassung
Kleinzellige Bronchialkarzinome (SCLC) sind mit einem Anteil von etwa 20 % die aggressivsten Lungentumore. Obwohl sie zunächst gut auf Chemotherapeutika ansprechen, sind sie schnell wieder progredient und ihre Prognose hat sich daher auch nach über dreißig Jahren intensiver Forschung nicht wesentlich verbessert. Durch das molekulare Verständnis der Tumorentstehung und der maßgeblich beteiligten Gene beim SCLC könnten sich aber für die Zukunft interessante neue therapeutische Ansatzpunkte in Form von Antikörpern, kleinen Molekülen oder Vakzinierungen ergeben. Nach einer kurzen Einleitung über die Funktion des jeweiligen Gens wird dessen klinische Bedeutung beim SCLC erläutert. Hier soll zunächst die diagnostische und prognostische Bedeutung beleuchtet werden. Anschließend werden die aktuellen therapeutischen Ansätze, die sich häufig noch auf dem Level von klinischen Phase-I- und -II-Studien befinden, vorgestellt und bewertet.
Abstract
Small-cell lung cancer accounts for up to 20 % of lung cancer and is the most aggressive type. Although responding to chemotherapy, it often relapses early. In spite of more than thirty years of intensive research, its prognosis has not been inproved. Through increasing knowledge about molecular mechanisms and the involved genes, translational research into antibodies, small molecules and even vaccines, might result in interesting new strategies for the near future. After a short introduction about the function of the relevant genes, the diagnostic and prognostic value will be described. In the second part of this review the focus will lie on current studies (mostly phases I and II) for the treatment of SCLC.
Literatur
- 1 Jemal A, Tiwari R C, Murray T. et al . Cancer statistics, 2004. CA Cancer J Clin. 2004; 54 8-29
- 2 Tyczynski J E, Bray F, Parkin D M. Lung cancer in Europe in 2000: epidemiology, prevention, and early detection. Lancet Oncol. 2003; 4 45-55
- 3 Brueckl W M, Herbst L, Lechler A. et al . Predictive and prognostic factors in small cell lung carcinoma (SCLC) - analysis from routine clinical practice. Anticancer Res. 2006; 26 4825-4832
- 4 Turrisi 3rd A T, Kim K, Blum R. et al . Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med. 1999; 340 265-271
- 5 Auperin A, Arriagada R, Pignon J P. et al . Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999; 341 476-484
- 6 Sundstrom S, Bremnes R M, Kaasa S. et al . Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up. J Clin Oncol. 2002; 20 4665-7462
- 7 Slotman B, Faivre-Finn C, Kramer G. et al . A randomized trial of prophylactic cranial irradiation (PCI) versus no PCI in extensive disease small cell lung cancer after a response to chemotherapy (EORTC 08 993-22 993). Proc Am Soc Clin Oncol. 2007; 25 2s
- 8 Pawel J von, Schiller J H, Shepherd F A. et al . Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol. 1999; 17 658-667
- 9 Chute J P, Chen T, Feigal E. et al . Twenty years of phase III trials for patients with extensive-stage small-cell lung cancer: perceptible progress. J Clin Oncol. 1999; 17 1794-1801
- 10 Schmidt E V. The role of c-myc in regulation of translation initiation. Oncogene. 2004; 23 3217-3221
- 11 Ponzielli R, Katz S, Barsyte-Lovejoy D. et al . Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer. 2005; 41 2485-2501
- 12 Akie K, Dosaka-Akita H, Murakami A. et al . A combination treatment of c-myc antisense DNA with all-trans-retinoic acid inhibits cell proliferation by downregulating c-myc expression in small cell lung cancer. Antisense Nucleic Acid Drug Dev. 2000; 10 243-249
- 13 Devi G R, Beer T M, Corless C L. et al . In vivo bioavailability and pharmacokinetics of a c-MYC antisense phosphorodiamidate morpholino oligomer, AVI-4126, in solid tumors. Clin Cancer Res. 2005; 11 3930-3938
- 14 de Jong D, Prins F A, Mason D Y. et al . Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells. Cancer Res. 1994; 54 256-2560
- 15 Reed J C. Bcl-2 family proteins. Oncogene. 1998; 17 3225-3236
- 16 Ben-Ezra J M, Kornstein M J, Grimes M M. et al . Small cell carcinomas of the lung express the Bcl-2 protein. Am J Pathol. 1994; 145 1036-1040
- 17 Fennell D A. Bcl-2 as a target for overcoming chemoresistance in small-cell lung cancer. Clin Lung Cancer. 2003; 4 307-313
- 18 Higashiyama M, Doi O, Kodama K. et al . Bcl-2 oncoprotein expression is increased especially in the portion of small cell carcinoma within the combined type of small cell lung cancer. Tumour Biol. 1996; 17 341-344
- 19 Ikegaki N, Katsumata M, Minna J. et al . Expression of bcl-2 in small cell lung carcinoma cells. Cancer Res. 1994; 54 6-8
- 20 Paik K H, Park Y H, Ryoo B Y. et al . Prognostic value of immunohistochemical staining of p53, bcl-2, and Ki-67 in small cell lung cancer. J Korean Med Sci. 2006; 21 35-39
- 21 Maitra A, Amirkhan R H, Saboorian M H. et al . Survival in small cell lung carcinoma is independent of Bcl-2 expression. Hum Pathol. 1999; 30 712-717
- 22 Breton C, Story M D, Meyn R E. Bcl-2 expression correlates with apoptosis induction but not loss of clonogenic survival in small cell lung cancer cell lines treated with etoposide. Anticancer Drugs. 1998; 9 751-757
- 23 Kim Y C, Park K O, Kern J A. et al . The interactive effect of Ras, HER2, P53 and Bcl-2 expression in predicting the survival of non-small cell lung cancer patients. Lung Cancer. 1998; 22 181-190
- 24 Sartorius U A, Krammer P H. Upregulation of Bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer. 2002; 97 584-592
- 25 Zangemeister-Wittke U, Schenker T, Luedke G H. et al . Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small-cell lung cancer cell lines. Br J Cancer. 1998; 78 1035-1042
- 26 Rudin C M, Kozloff M, Hoffman P C. et al . Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol. 2004; 22 1110-1117
- 27 Rudin C M, Salgia R, Wang X F. et al . CALGB30103: A randomized phase II study of carboplatin and etoposide (CE) with or without G3139 in patients with extensive stage small cell lung cancer (ES-SCLC). Proc Am Soc Clin Oncol. 2005; 23 7168
- 28 Mortenson M M, Schlieman M G, Virudachalam S. et al . Reduction in BCL-2 levels by 26S proteasome inhibition with bortezomib is associated with induction of apoptosis in small cell lung cancer. Lung Cancer. 2005; 49 163-170
- 29 Richardson P G, Sonneveld P, Schuster M W. et al . Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005; 352 2487-2498
- 30 Lara P N, Chansky C, Davies A M. et al . Bortezomib (PS-341) in relapsed or refractory extensive stage small cell lung cancer: A Southwest Oncology Group Phase II Trial (S0327). Journal of Thoracic Oncology. 2006; 1 996-1001
- 31 Tomita M, Wright J J, Kellogg R. Phase I study of topotecan and brotezomib (Vc) with pharmacokinetic and pharmacodynamic correlates. Lung Cancer. 2005; 49 798
- 32 Levine A J, Momand J, Finlay C A. The p53 tumour suppressor gene. Nature. 1991; 351 453-456
- 33 Olivier M, Eeles R, Hollstein M. et al . The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002; 19 607-614
- 34 Denissenko M F, Pao A, Tang M. et al . Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996; 274 430-432
- 35 Vaart P J van de, Belderbos J, de Jong D. et al . DNA-adduct levels as a predictor of outcome for NSCLC patients receiving daily cisplatin and radiotherapy. Int J Cancer. 2000; 89 160-166
- 36 Cagini L, Monacelli M, Giustozzi G. et al . Biological prognostic factors for early stage completely resected non-small cell lung cancer. J Surg Oncol. 2000; 74 53-60
- 37 Rosenfeld M R, Malats N, Schramm L. et al . Serum anti-p53 antibodies and prognosis of patients with small-cell lung cancer. J Natl Cancer Inst. 1997; 89 381-385
- 38 Zalcman G, Tredaniel J, Schlichtholz B. et al . Prognostic significance of serum p53 antibodies in patients with limited-stage small cell lung cancer. Int J Cancer. 2000; 89 81-86
- 39 Rodriguez-Salas N, Palacios J, Moreno G. et al . Correlation of p53 oncoprotein expression with chemotherapy response in small cell lung carcinomas. Lung Cancer. 2001; 34 67-74
- 40 Gemba K, Ueoka H, Kiura K. et al . Immunohistochemical detection of mutant p53 protein in small-cell lung cancer: relationship to treatment outcome. Lung Cancer. 2000; 29 23-31
- 41 Antonia S J, Mirza N, Fricke I. et al . Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006; 12 878-887
- 42 Chiappori A, Sereno M, Gabrilovich D I. et al . Phase II trial of patients with extensive stage small cell lung cancer (ES-SCLC) immunized with p53-transduced dendritic cells (p53-DC): Immune sensitization to chemotherapy. Proc Am Soc Clin Oncol. 2007; 25 120s
- 43 Cantley L C, Neel B G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A. 1999; 96 4240-4245
- 44 Liaw D, Marsh D J, Li J. et al . Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997; 16 64-67
- 45 Nelen M R, Staveren W C van, Peeters E A. et al . Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997; 6 1383-1387
- 46 Forgacs E, Biesterveld E J, Sekido Y. et al . Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene. 1998; 17 1557-1565
- 47 Virmani A K, Fong K M, Kodagoda D. et al . Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer. 1998; 21 308-319
- 48 Kim S K, Su L K, Oh Y. et al . Alterations of PTEN/MMAC1, a candidate tumor suppressor gene, and its homologue, PTH2, in small cell lung cancer cell lines. Oncogene. 1998; 16 89-93
- 49 Kohno T, Takahashi M, Manda R. et al . Inactivation of the PTEN/MMAC1/TEP1 gene in human lung cancers. Genes Chromosomes Cancer. 1998; 22 152-156
- 50 Yokomizo A, Tindall D J, Drabkin H. et al . PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene. 1998; 17 475-479
- 51 Shi Y, Gera J, Hu L. et al . Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res. 2002; 62 5027-5034
- 52 Pandya K J, Levy D E, Hidalgo M. et al . A randomized, phase II ECOG trial of two dose levels of temsirolimus (CCI-779) in patients with extensive stage small cell lung cancer in remission after induction chemotherapy. A prelimanry report. Proc Am Soc Clin Oncol. 2005; 23 LBA 7005
- 53 Molenaar W M, de Leij L, Trojanowski J Q. Neuroectodermal tumors of the peripheral and the central nervous system share neuroendocrine N-CAM-related antigens with small cell lung carcinomas. Acta Neuropathol (Berl). 1991; 83 46-54
- 54 Rutishauser U, Acheson A, Hall A K. et al . The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science. 1988; 240 53-57
- 55 Lantuejoul S, Moro D, Michalides R J. et al . Neural cell adhesion molecules (NCAM) and NCAM-PSA expression in neuroendocrine lung tumors. Am J Surg Pathol. 1998; 22 1267-1276
- 56 Kibbelaar R E, Moolenaar K E, Michalides R J. et al . Neural cell adhesion molecule expression, neuroendocrine differentiation and prognosis in lung carcinoma. Eur J Cancer. 1991; 27 431-435
- 57 Kontogianni K, Nicholson A G, Butcher D. et al . CD56: a useful tool for the diagnosis of small cell lung carcinomas on biopsies with extensive crush artefact. J Clin Pathol. 2005; 58 978-980
- 58 Tassone P, Gozzini A, Goldmacher V. et al . In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2’-deacetyl-N2’-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res. 2004; 64 4629-4636
- 59 Fosella F, McCann J, Tolcher A. et al . Phase II trial of BB-10 901 (huN901-DM1) given weekly for four consecutive weeks every 6 weeks in patients with relapsed SCLC and CD56-positive small cell carcinoma. Proc Am Soc Clin Oncol. 2005; 23 7159
- 60 Allsopp R C, Vaziri H, Patterson C. et al . Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992; 89 10 114-10 118
- 61 Harley C B, Futcher A B, Greider C W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345 458-460
- 62 Hastie N D, Dempster M, Dunlop M G. et al . Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990; 346 866-868
- 63 Meyerson M. Role of telomerase in normal and cancer cells. J Clin Oncol. 2000; 18 2626-2634
- 64 Counter C M, Avilion A A, LeFeuvre C E. et al . Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J. 1992; 11 1921-1929
- 65 Holt S E, Shay J W. Role of telomerase in cellular proliferation and cancer. J Cell Physiol. 1999; 180 10-18
- 66 Nakamura T M, Cech T R. Reversing time: origin of telomerase. Cell. 1998; 92 587-590
- 67 Sarvesvaran J, Going J J, Milroy R. et al . Is small cell lung cancer the perfect target for anti-telomerase treatment?. Carcinogenesis. 1999; 20 1649-1651
- 68 Lantuejoul S, Soria J C, Moro-Sibilot D. et al . Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours. Br J Cancer. 2004; 90 1222-1229
- 69 Osaki T, Oyama T, Inoue M. et al . Molecular biological markers and micrometastasis in resected non-small-cell lung cancer. Prognostic implications. Jpn J Thorac Cardiovasc Surg. 2001; 49 545-551
- 70 Hiyama K, Hiyama E, Ishioka S. et al . Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst. 1995; 87 895-902
- 71 Song J S. Adenovirus-mediated suicide SCLC gene therapy using the increased activity of the hTERT promoter by the MMRE and SV40 enhancer. Biosci Biotechnol Biochem. 2005; 69 56-62
- 72 Song J S, Kim H P. Adenovirus-mediated HSV-TK gene therapy using the human telomerase promoter induced apoptosis of small cell lung cancer cell line. Oncol Rep. 2004; 12 443-447
- 73 Brunsvig P F, Gjertsen M K, Kvalheim G. et al . A phase I/II study of telomerase peptide vaccination of patients with non-small cell lung cancer. Proc Am Soc Clin Oncol. 2005; 23 2580
- 74 Grotzinger J. Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta. 2002; 1592 2152-23
- 75 Blackhall F H, Pintilie M, Michael M. et al . Expression and prognostic significance of kit, protein kinase B, and mitogen-activated protein kinase in patients with small cell lung cancer. Clin Cancer Res. 2003; 9 2241-2247
- 76 Hasegawa Y, Takanashi S, Okudera K. et al . Vascular endothelial growth factor level as a prognostic determinant of small cell lung cancer in Japanese patients. Intern Med. 2005; 44 26-34
- 77 Micke P, Hengstler J G, Ros R. et al . c-erbB-2 expression in small-cell lung cancer is associated with poor prognosis. Int J Cancer. 2001; 92 474-479
- 78 Potti A, Willardson J, Forseen C. et al . Predictive role of HER-2/neu overexpression and clinical features at initial presentation in patients with extensive stage small cell lung carcinoma. Lung Cancer. 2002; 36 257-261
- 79 Rohr U P, Rehfeld N, Pflugfelder L. et al . Expression of the tyrosine kinase c-kit is an independent prognostic factor in patients with small cell lung cancer. Int J Cancer. 2004; 111 259-263
- 80 Taniwaki M, Daigo Y, Ishikawa N. et al . Gene expression profiles of small-cell lung cancers: Molecular signatures of lung cancer. Int J Oncol. 2006; 29 567-575
- 81 Volm M, Koomagi R, Mattern J. et al . Angiogenic growth factors and their receptors in non-small cell lung carcinomas and their relationships to drug response in vitro. Anticancer Res. 1997; 17 99-103
- 82 Fabbro D, Ruetz S, Buchdunger E. et al . Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther. 2002; 93 79-98
- 83 Franklin W A, Veve R, Hirsch F R. et al . Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol. 2002; 29 3-14
- 84 Wells A. EGF receptor. Int J Biochem Cell Biol. 1999; 31 637-643
- 85 Gamou S, Hunts J, Harigai H. et al . Molecular evidence for the lack of epidermal growth factor receptor gene expression in small cell lung carcinoma cells. Cancer Res. 1987; 47 2668-2673
- 86 Shigematsu H, Lin L, Takahashi T. et al . Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005; 97 339-346
- 87 Tanno S, Toyoshima E, Kikuchi K. ZD 1839 inhibited ERK1/2 phosphorylation induced by EGF in small cell lung cancer cell lines with deetectable and undetectable EGFR expression. Proc Am Assoc Cancer Res. 2003; 44 6558
- 88 Araki J, Okamoto I, Suto R. et al . Efficacy of the tyrosine kinase inhibitor gefitinib in a patient with metastatic small cell lung cancer. Lung Cancer. 2005; 48 141-144
- 89 Okamoto I, Araki J, Suto R. et al . EGFR mutation in gefitinib-responsive small-cell lung cancer. Ann Oncol. 2006; 17 1028-1029
- 90 Zakowski M F, Ladanyi M, Kris M G. EGFR mutations in small-cell lung cancers in patients who have never smoked. N Engl J Med. 2006; 355 213-155
- 91 Moore A M, Estes D, Govidan R. et al . A phase II trial of gefitinib in patients with chemosensitive and chemorefractory relapsed neuroendocrine cancers. A Hoosier Oncology Group Trial. Proc Am Soc Clin Oncol. 2005; 23 7160
- 92 Lynch T J, Bell D W, Sordella R. et al . Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350 2129-2139
- 93 Paez J G, Janne P A, Lee J C. et al . EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304 1497-1500
- 94 Pao W, Miller V, Zakowski M. et al . EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004; 101 13 306-13 311
- 95 Shepherd F A, Rodrigues Pereira J, Ciuleanu T. et al . Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005; 353 123-132
- 96 Tsao M S, Sakurada A, Cutz J C. et al . Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med. 2005; 353 133-144
- 97 Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997; 18 4-25
- 98 Ogawa S, Oku A, Sawano A. et al . A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem. 1998; 273 31 273-31 282
- 99 Neufeld G, Cohen T, Gengrinovitch S. et al . Vascular endothelial growth factor (VEGF) and its receptors. Faseb J. 1999; 13 9-22
- 100 Veikkola T, Karkkainen M, Claesson-Welsh L. et al . Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000; 60 203-212
- 101 Presta L G, Chen H, O'Connor S J. et al . Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 1997; 57 4593-4599
- 102 Raefsky E L, Spigel D R, Greco F A. et al . Irinotecan (I), carboplatin (C), and radiotherapy (RT) followed by bevacizumab (B) in the treatment of limited-stage small cell lung cancer (SCLC): A phase II trial of the Minnie Pearl Cancer Research Network. Proc Am Soc Clin Oncol. 2005; 23 7050
- 103 Ready N, Dudek A Z, Wang X F. et al . CALGB 30 306: A phase II study of cisplatin (C), irinotecan (I) and bevacizumab (B) for untreated extensive sage small cell lung cancer (ES-SCLC). Proc Am Soc Clin Oncol. 2007; 25 400s
- 104 Hibi K, Takahashi T, Sekido Y. et al . Coexpression of the stem cell factor and the c-kit genes in small-cell lung cancer. Oncogene. 1991; 6 2291-2296
- 105 Rygaard K, Nakamura T, Spang-Thomsen M. Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts. Br J Cancer. 1993; 67 37-46
- 106 Sekido Y, Obata Y, Ueda R. et al . Preferential expression of c-kit protooncogene transcripts in small cell lung cancer. Cancer Res. 1991; 51 2416-2419
- 107 Wang W L, Healy M E, Sattler M. et al . Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene. 2000; 19 3521-3528
- 108 Soria J C, Johnson B E, Chevalier T L. Imatinib in small cell lung cancer. Lung Cancer. 2003; 41 Suppl 1 S49-53
- 109 Johnson B E, Fischer T, Fischer B. et al . Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res. 2003; 9 5880-5887
- 110 Dy G K, Miller A A, Mandrekar S. A phase II NCCTG/CALGB trial of imatinib (STI571) in patietns with c-kit expressing relapsed small cell lung cancer (SCLC). Proc Am Assoc Cancer Res. 2005; 23 632s
- 111 Mendel D B, Laird A D, Xin X. et al . In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003; 9 327-337
- 112 Kulke M, Lenz H, Meropol N. A phse 2 study to evaluate the efficacy and safety of SU11248 in patients with unresectable neuroendocrine tumours. Proc Am Assoc Cancer Res. 2005; 23 310s
- 113 Wilhelm S M, Carter C, Tang L. et al . BAY 43 - 9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004; 64 7099-7109
- 114 Ryan A J, Wedge S R. ZD6747: a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer. 2005; 92 S6-S13
- 115 Arnold A M, Smylie M, Ding K. et al . Randomized phase II study of maintanance vandetanib (ZD6474) in small cell lung cancer (SCLC) patients who have a complete or partial response to induction therapy: NCIC CTG BR.20. Proc Am Soc Clin Oncol. 2007; 25 390s
- 116 Bhattacharjee A, Richards W G, Staunton J. et al . Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001; 98 13 790-13 795
- 117 Garber M E, Troyanskaya O G, Schluens K. et al . Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 2001; 98 13 784-13 789
- 118 Sugita M, Geraci M, Gao B. et al . Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer Res. 2002; 62 3971-3979
- 119 Coonney M M, Subbiah S, Chapman R. Phase II trial of maintenance daily oral thalidomide in patients with extensive-stage small cell lung cancer (ES-SCLC) in remission. Proc Am Assoc Cancer Res. 2005; 23 661s
PD Dr. med. Wolfgang M. Brückl
Leiter der pneumologischen Onkologie, Medizinische Klinik 1, Universitätsklinikum Erlangen
Ulmenweg 18
91054 Erlangen
eMail: wolfgang.brueckl@uk-erlangen.de