Subscribe to RSS
DOI: 10.1055/s-2007-970786
Formal Synthesis of Cytostatin by a Convergent Approach
Publication History
Publication Date:
26 March 2007 (online)
Abstract
A formal synthesis of cytostatin, an antitumor agent, has been achieved according to a convergent approach involving the coupling of a functionalized organolithium (C1-C8 subunit) with an aldehyde (C9-C13 subunit).
Key words
cytostatin - natural products - formal synthesis - diastereoselectivity - metathesis
-
1a
Amemiya M.Ueno M.Osono M.Masuda T.Kinoshita N.Nishida C.Hamada M.Ishisuka M.Takeuchi T. J. Antibiot. 1994, 47: 536 -
1b
Amemiya M.Someno T.Sawa R.Naganawa H.Ishizuka M.Takeuchi T. J. Antibiot. 1994, 47: 541 -
2a
Yamazaki K.Amemiya M.Ishizuka M.Takeuchi T. J. Antibiot. 1995, 48: 1138 -
2b
Kawada M.Amemiya M.Ishizuka M.Takeuchi T. Jpn. J. Cancer Res. 1999, 90: 219 -
2c
Masuda T.Watanabe S.Amemiya M.Ishizuka M.Takeuchi T. J. Antibiot. 1995, 48: 528 -
2d
Kawada M.Kawatsu M.Masuda T.Ohba S.Amemiya M.Kohama T.Ishizuka M.Takeuchi T. Int. Immunopharm. 2003, 3: 179 - 3
Kawada M.Amemiya M.Ishizuka M.Takeuchi T. Biochim. Biophys. Acta: Mol. Cell Res. 1999, 1452: 209 - 4
Bialy L.Waldmann H. Angew. Chem. Int. Ed. 2005, 44: 3814 ; and references therein -
5a
Bialy L.Waldmann H. Angew. Chem. Int. Ed. 2002, 41: 1748 -
5b
Bialy L.Waldmann H. Chem. Eur. J. 2004, 10: 2759 - 6
Marshall JA.Ellis K. Tetrahedron Lett. 2004, 45: 1351 - 7
Lawhorn BG.Boga SB.Wolkenberg SE.Colby DA.Gauss C.-M.Swingle MR.Amable L.Honkanen RE.Boger DL. J. Am. Chem. Soc. 2006, 128: 16720 - 8 For a review, see:
Mengel A.Reiser O. Chem. Rev. 1999, 99: 1191 - This compound was prepared in two steps from butane-1,4-diol by silylation (TBDPSCl, Et3N, CH2Cl2, r.t.) followed by oxidation (PDC, DMF, r.t.), see:
-
9a
Barrett AGM.Flygare JA. J. Org. Chem. 1991, 56: 638 -
9b
Zhou S.Chen H.Liao W.Chen S.-H.Li G.Ando R.Kuwajima I. Tetrahedron Lett. 2005, 46: 6341 -
10a
Aiguade J.Hao J.Forsyth CJ. Tetrahedron Lett. 2001, 42: 817 -
10b
Lafontaine JA.Provencal DP.Gardelli C.Leahy JW. J. Org. Chem. 2003, 68: 4215 -
11a
Roush WR.Ando K.Powers DB.Palkowitz AD.Halterman RL. J. Am. Chem. Soc. 1990, 112: 6339 -
11b
Roush WR.Parkowitz AD.Ando K. J. Am. Chem. Soc. 1990, 112: 6348 -
12a
Roush WR. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.1-54 -
12b
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 - 13
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 -
15a
Acetal 9 was obtained as one major diastereomer (dr > 90:10) having a 1,4-trans-disubstitution pattern based on the coupling constant between H3 and H4 (3 J H3-H4 = 6.0 Hz), see ref. 15b. However, the diastereomeric ratio varied with the reaction time due to thermodynamic equilibration of 9. Partial equilibration of the compounds bearing an acetalic C1 stereocenter was also noticed during purification on silica gel. This had no consequence since the C1 stereocenter was removed later in the synthesis.
-
15b
Valverde S.Bernabe M.Garcia-Ochoa S.Gomez AM. J. Org. Chem. 1990, 55: 2294 - 16
Garegg PJ.Samuelsson B. J. Chem. Soc., Perkin Trans. 1 1980, 2866 - 17
Cossy J.Schmitt A.Cinquin C.Buisson D.Belotti D. Bioorg. Med. Chem. Lett. 1997, 7: 1699 -
18a
Seebach D.Wasmuth D. Helv. Chim. Acta 1980, 63: 197 -
18b
Frater G.Müller U.Günther W. Tetrahedron 1984, 40: 1269 - 19 In model studies, the addition of n-BuLi to aldehyde 17 (Et2O, -78 °C to -30 °C) and subsequent desilylation (n-Bu4NF, THF) provided a 70:30 diastereomeric mixture of the secondary alcohols 23 and 24 (68%, Scheme 5). To ascertain that the major diastereomer 23 arose from a Felkin-Anh control, the directed reduction of the β-hydroxy-ketone 25 [Me4NBH(OAc)3, MeCN-AcOH, -40 °C to 0 °C] followed by desilylation (n-Bu4NF, THF) was carried out and led to a 85:15 mixture of the anti-1,3-diol 23 and the syn-1,3-diol 24, see:
Evans DA.Chapman KT.Carreira EM. J. Am. Chem. Soc. 1988, 110: 3560
References and Notes
The 1H NMR data of lactone 8, and in particular the coupling constants J H3-H4, J H4-H5 and J H5-H6 as well as the chemical shifts of the methyl groups (H19 and H20) compare favorably well with those reported for structurally related syn,anti-diastereomeric lactones (Figure [1] ). [5] ,7 1H NMR (400 MHz, CD3OD): δ = 7.69-7.99 (m, 4 H), 7.43-7.37 (m, 6 H), 7.13 (dd, J = 9.6, 6.5 Hz, 1 H, H3), 5.92 (dd, J = 9.6, 0.7 Hz, 1 H, H2), 4.11 (dd, J = 10.5, 3.1 Hz, 1 H, H5), 3.86-3.74 (m, 2 H, 2 H8), 2.55 (m, 1 H, H4), 2.18 (m, 1 H, H7), 2.05 (m, 1 H, H6), 1.37 (m, 1 H, H7), 1.03 (s, 9 H), 0.98 (d, J = 7.1 Hz, 3 H, 3H19), 0.84 (d, J = 6.8 Hz, 3 H, 3 H20).
20Compound 20 and its epimer at C9 could be separated by flash chromatography on silica gel. However, the separation of the C9 epimers turned out to be easier for the alkynyl iodide 22.
21Bis(9H-fluoren-9-ylmethyl)-{(1S,2S,3R)-3-hydroxy-5-iodo-2-methyl-1-[(3S)-3-((2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)butyl]pent-4-ynyl} phosphate (22): mp 112 °C; [α]D +46.5 (c 0.4, CHCl3). IR: 3353, 2360, 1714, 1449, 1380, 1250, 1106, 1070, 987, 739 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.75-7.67 (m, 4 H), 7.54-7.41 (m, 4 H), 7.41-7.20 (m, 8 H), 6.95 (dd, J = 9.5, 6.5 Hz, 1 H), 5.93 (d, J = 9.5 Hz, 1 H), 4.69-4.61 (m, 1 H), 4.36-4.07 (m, 7 H), 3.86 (dd, J = 10.3, 2.4 Hz, 1 H), 2.40 (m, 1 H), 1.83-1.58 (m, 4 H), 1.51-1.41 (m, 1 H), 1.15-1.05 (m, 1 H), 0.98 (d, J = 7.0 Hz, 3 H), 0.89 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.4 (s), 151.6 (d), 143.1 (s, 2 C), 142.9 (s), 142.8 (s), 141.3 (s, 4 C), 127.9 (d), 127.8 (d), 127.7 (d, 2 C), 127.2 (d, 2 C), 127.1 (d, 2 C), 125.0 (d, 4 C), 120.0 (d) and 119.9 (d, 5 C), 94.8 (s), 83.5 (d), 78.4 [d, 2 J(13C-31P) = 5.8 Hz], 69.4 [t, 2 J(13C-31P) = 4.0 Hz], 69.3 [t, 2 J(13C-31P) = 4.3 Hz], 65.1 (d), 47.9 [d, 3 J(13C-31P) = 8.4 Hz], 47.8 [d, 3 J(13C-31P) = 8.7 Hz], 43.9 [d, 3 J(13C-31P) = 3.6 Hz], 33.8 (d), 30.6 [t, 3 J(13C-31P) = 4.1 Hz], 30.3 (d), 28.4 (t), 14.7 (q), 10.7 (q), 9.1 (q), 1.1 (s).