Synlett 2007(6): 0934-0938  
DOI: 10.1055/s-2007-970786
LETTER
© Georg Thieme Verlag Stuttgart · New York

Formal Synthesis of Cytostatin by a Convergent Approach

Anne-Frédérique Salit, Christophe Meyer*, Janine Cossy*
Laboratoire de Chimie Organique, Associé au CNRS, ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
Fax: +33(1)40794660; e-Mail: christophe.meyer@espci.fr; e-Mail: janine.cossy@espci.fr;
Further Information

Publication History

Received 28 December 2006
Publication Date:
26 March 2007 (online)

Abstract

A formal synthesis of cytostatin, an antitumor agent, has been achieved according to a convergent approach involving the coupling of a functionalized organolithium (C1-C8 subunit) with an aldehyde (C9-C13 subunit).

    References and Notes

  • 1a Amemiya M. Ueno M. Osono M. Masuda T. Kinoshita N. Nishida C. Hamada M. Ishisuka M. Takeuchi T. J. Antibiot.  1994,  47:  536 
  • 1b Amemiya M. Someno T. Sawa R. Naganawa H. Ishizuka M. Takeuchi T. J. Antibiot.  1994,  47:  541 
  • 2a Yamazaki K. Amemiya M. Ishizuka M. Takeuchi T. J. Antibiot.  1995,  48:  1138 
  • 2b Kawada M. Amemiya M. Ishizuka M. Takeuchi T. Jpn. J. Cancer Res.  1999,  90:  219 
  • 2c Masuda T. Watanabe S. Amemiya M. Ishizuka M. Takeuchi T. J. Antibiot.  1995,  48:  528 
  • 2d Kawada M. Kawatsu M. Masuda T. Ohba S. Amemiya M. Kohama T. Ishizuka M. Takeuchi T. Int. Immunopharm.  2003,  3:  179 
  • 3 Kawada M. Amemiya M. Ishizuka M. Takeuchi T. Biochim. Biophys. Acta: Mol. Cell Res.  1999,  1452:  209 
  • 4 Bialy L. Waldmann H. Angew. Chem. Int. Ed.  2005,  44:  3814 ; and references therein
  • 5a Bialy L. Waldmann H. Angew. Chem. Int. Ed.  2002,  41:  1748 
  • 5b Bialy L. Waldmann H. Chem. Eur. J.  2004,  10:  2759 
  • 6 Marshall JA. Ellis K. Tetrahedron Lett.  2004,  45:  1351 
  • 7 Lawhorn BG. Boga SB. Wolkenberg SE. Colby DA. Gauss C.-M. Swingle MR. Amable L. Honkanen RE. Boger DL. J. Am. Chem. Soc.  2006,  128:  16720 
  • 8 For a review, see: Mengel A. Reiser O. Chem. Rev.  1999,  99:  1191 
  • This compound was prepared in two steps from butane-1,4-diol by silylation (TBDPSCl, Et3N, CH2Cl2, r.t.) followed by oxidation (PDC, DMF, r.t.), see:
  • 9a Barrett AGM. Flygare JA. J. Org. Chem.  1991,  56:  638 
  • 9b Zhou S. Chen H. Liao W. Chen S.-H. Li G. Ando R. Kuwajima I. Tetrahedron Lett.  2005,  46:  6341 
  • 10a Aiguade J. Hao J. Forsyth CJ. Tetrahedron Lett.  2001,  42:  817 
  • 10b Lafontaine JA. Provencal DP. Gardelli C. Leahy JW. J. Org. Chem.  2003,  68:  4215 
  • 11a Roush WR. Ando K. Powers DB. Palkowitz AD. Halterman RL. J. Am. Chem. Soc.  1990,  112:  6339 
  • 11b Roush WR. Parkowitz AD. Ando K. J. Am. Chem. Soc.  1990,  112:  6348 
  • 12a Roush WR. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.1-54  
  • 12b Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 13 Scholl M. Ding S. Lee CW. Grubbs RH. Org. Lett.  1999,  1:  953 
  • 15a

    Acetal 9 was obtained as one major diastereomer (dr > 90:10) having a 1,4-trans-disubstitution pattern based on the coupling constant between H3 and H4 (3 J H3-H4 = 6.0 Hz), see ref. 15b. However, the diastereomeric ratio varied with the reaction time due to thermodynamic equilibration of 9. Partial equilibration of the compounds bearing an acetalic C1 stereocenter was also noticed during purification on silica gel. This had no consequence since the C1 stereocenter was removed later in the synthesis.

  • 15b Valverde S. Bernabe M. Garcia-Ochoa S. Gomez AM. J. Org. Chem.  1990,  55:  2294 
  • 16 Garegg PJ. Samuelsson B. J. Chem. Soc., Perkin Trans. 1  1980,  2866 
  • 17 Cossy J. Schmitt A. Cinquin C. Buisson D. Belotti D. Bioorg. Med. Chem. Lett.  1997,  7:  1699 
  • 18a Seebach D. Wasmuth D. Helv. Chim. Acta  1980,  63:  197 
  • 18b Frater G. Müller U. Günther W. Tetrahedron  1984,  40:  1269 
  • 19 In model studies, the addition of n-BuLi to aldehyde 17 (Et2O, -78 °C to -30 °C) and subsequent desilylation (n-Bu4NF, THF) provided a 70:30 diastereomeric mixture of the secondary alcohols 23 and 24 (68%, Scheme 5). To ascertain that the major diastereomer 23 arose from a Felkin-Anh control, the directed reduction of the β-hydroxy-ketone 25 [Me4NBH(OAc)3, MeCN-AcOH, -40 °C to 0 °C] followed by desilylation (n-Bu4NF, THF) was carried out and led to a 85:15 mixture of the anti-1,3-diol 23 and the syn-1,3-diol 24, see: Evans DA. Chapman KT. Carreira EM. J. Am. Chem. Soc.  1988,  110:  3560 
14

The 1H NMR data of lactone 8, and in particular the coupling constants J H3-H4, J H4-H5 and J H5-H6 as well as the chemical shifts of the methyl groups (H19 and H20) compare favorably well with those reported for structurally related syn,anti-diastereomeric lactones (Figure [1] ). [5] ,7 1H NMR (400 MHz, CD3OD): δ = 7.69-7.99 (m, 4 H), 7.43-7.37 (m, 6 H), 7.13 (dd, J = 9.6, 6.5 Hz, 1 H, H3), 5.92 (dd, J = 9.6, 0.7 Hz, 1 H, H2), 4.11 (dd, J = 10.5, 3.1 Hz, 1 H, H5), 3.86-3.74 (m, 2 H, 2 H8), 2.55 (m, 1 H, H4), 2.18 (m, 1 H, H7), 2.05 (m, 1 H, H6), 1.37 (m, 1 H, H7), 1.03 (s, 9 H), 0.98 (d, J = 7.1 Hz, 3 H, 3H19), 0.84 (d, J = 6.8 Hz, 3 H, 3 H20).

20

Compound 20 and its epimer at C9 could be separated by flash chromatography on silica gel. However, the separation of the C9 epimers turned out to be easier for the alkynyl iodide 22.

21

Bis(9H-fluoren-9-ylmethyl)-{(1S,2S,3R)-3-hydroxy-5-iodo-2-methyl-1-[(3S)-3-((2S,3S)-3-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)butyl]pent-4-ynyl} phosphate (22): mp 112 °C; [α]D +46.5 (c 0.4, CHCl3). IR: 3353, 2360, 1714, 1449, 1380, 1250, 1106, 1070, 987, 739 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.75-7.67 (m, 4 H), 7.54-7.41 (m, 4 H), 7.41-7.20 (m, 8 H), 6.95 (dd, J = 9.5, 6.5 Hz, 1 H), 5.93 (d, J = 9.5 Hz, 1 H), 4.69-4.61 (m, 1 H), 4.36-4.07 (m, 7 H), 3.86 (dd, J = 10.3, 2.4 Hz, 1 H), 2.40 (m, 1 H), 1.83-1.58 (m, 4 H), 1.51-1.41 (m, 1 H), 1.15-1.05 (m, 1 H), 0.98 (d, J = 7.0 Hz, 3 H), 0.89 (d, J = 6.9 Hz, 3 H), 0.78 (d, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.4 (s), 151.6 (d), 143.1 (s, 2 C), 142.9 (s), 142.8 (s), 141.3 (s, 4 C), 127.9 (d), 127.8 (d), 127.7 (d, 2 C), 127.2 (d, 2 C), 127.1 (d, 2 C), 125.0 (d, 4 C), 120.0 (d) and 119.9 (d, 5 C), 94.8 (s), 83.5 (d), 78.4 [d, 2 J(13C-31P) = 5.8 Hz], 69.4 [t, 2 J(13C-31P) = 4.0 Hz], 69.3 [t, 2 J(13C-31P) = 4.3 Hz], 65.1 (d), 47.9 [d, 3 J(13C-31P) = 8.4 Hz], 47.8 [d, 3 J(13C-31P) = 8.7 Hz], 43.9 [d, 3 J(13C-31P) = 3.6 Hz], 33.8 (d), 30.6 [t, 3 J(13C-31P) = 4.1 Hz], 30.3 (d), 28.4 (t), 14.7 (q), 10.7 (q), 9.1 (q), 1.1 (s).