RSS-Feed abonnieren
DOI: 10.1055/s-2007-968025
Unprecedented Cyclization of Nicholas Cations onto Unactivated Terminal Alkenes: Tandem Trapping of Cationic Intermediates
Publikationsverlauf
Publikationsdatum:
07. Februar 2007 (online)
Abstract
Unprecedented 6-endo and 7-endo cyclizations of Nicholas cations generated from ω-ethylenic propargyl alcohols were used to prepare functionalized cyclohexanes and cycloheptanes. The reactions performed in the presence of TiCl4, BF3·OEt2, or HBF4 led to halides together with the corresponding elimination product. Their ratio depends on the nature of the Lewis acid used to generate the cation, on the solvent and on the temperature. The reactions performed in acetonitrile in the presence of triflic acid led to the corresponding amides in high yields through Ritter reaction.
Key words
alkyne complexes - cyclizations - carbocations - halogenation - amidation
-
1a
Caffyn AJ.Nicholas KM. Comprehensive Organometallic Chemistry II Vol. 12:Abel EW.Stone FG.Wilkinson G.Hegedus LS. Pergamon; Oxford: 1995. Chap. 7.1. -
1b
Nicholas KM. Acc. Chem. Res. 1987, 20: 207 -
1c
Green JR. Curr. Org. Chem. 2001, 5: 809 -
1d
Teobald BJ. Tetrahedron 2002, 58: 4133 -
2a
Salazar KL.Nicholas KM. Tetrahedron 2000, 56: 2211 -
2b
Salazar KL.Masood AK.Nicholas KM. J. Am. Chem. Soc. 1997, 119: 9053 -
2c
Lake K.Dorrell M.Blackman N.Khan MA.Nicholas KM. Organometallics 2003, 22: 4260 -
2d
Melykian GG.Combs RC.Lamirand J.Khan M.Nicholas KM. Tetrahedron Lett. 1994, 35: 363 -
3a
Melikyan GG.Villena F.Sepanian S.Pulido M.Sarkissian H.Florut A. Org. Lett. 2003, 5: 3395 -
3b
Melikyan GG.Deravakian A.Myer S.Yadegar S.Hardcastle KI.Ciurash J.Toure P. J. Organomet. Chem. 1999, 578: 68 -
3c
Melikyan GG.Sepanian S.Riahi B.Villena F.Jerome J.Ahrens B.McClain R.Matchett J.Scanlon S.Abrenica E.Pausen K.Hardcastle KI. J. Organomet. Chem. 2003, 683: 324 -
3d
Melikyan GG.Vostrowsky O.Bauer W.Bestmann HJ.Khan M.Nicholas KM. J. Org. Chem. 1994, 59: 222 - For the synthesis of fused ring systems, see:
-
4a
Tyrrell E.Claridge S.Davis R.Lebel J.Berge J. Synlett 1995, 714 -
4b
Berge J.Claridge S.Mann A.Muller C.Tyrrell E. Tetrahedron Lett. 1997, 38: 685 -
4c
Tyrrell E.Tillett C. Tetrahedron Lett. 1998, 39: 9535 -
4d
Tyrrell E.Skinner GA.Bashir T. Synlett 2001, 1929 - 5
Krafft ME.Cheung YY.Wright C.Cali R. J. Org. Chem. 1996, 61: 3912 - 6
Nakamura T.Matsui T.Tanino K.Kuwajima I. J. Org. Chem. 1997, 62: 3032 - For intramolecular trapping with allylsilanes, see:
-
7a
Lu Y.Green JR. Synlett 2001, 243 -
7b
Patel MM.Green JR. Chem. Commun. 1999, 509 - 9
Top S.Jaouen G. J. Org. Chem. 1981, 46: 78 -
11a
Schreiber SL.Sammakia T.Crowe WE. J. Am. Chem. Soc. 1986, 108: 3128 -
11b
Green JR. Chem. Commun. 1998, 1751 -
11c
Guo R.Green JR. Synlett 2000, 746 -
11d
DiMartino J.Green JR. Tetrahedron 2006, 62: 1402 -
11e
Konno T.Nagaï G.Ishihara T. J. Fluorine Chem. 2006, 127: 510 -
11f
Takano S.Sugihara T.Ogasawara K. Synlett 1991, 70 -
11g
Shibuya S.Isobe M. Synlett 1998, 373 -
11h
Shibuya S.Isobe M. Tetrahedron 1998, 54: 6677 - For a nucleophilicity scale of carbon-centered nucleophiles in intermolecular reactions, see:
-
12a
Mayr H.Kempf B.Ofial AR. Acc. Chem. Res. 2003, 36: 66 -
12b
Mayr H.Kuhn O.Schlierf C.Ofial AR. Tetrahedron 2000, 56: 4219
References and Notes
The axial protons in the α-position relative to either the complexed triple bond or the halide are characterized by triplet of triplet patterns (J = 11.6-12.1 and 3.0-3.6 Hz; dtt were observed for protons α to fluorine).
10
Typical Experimental Procedure for the Preparation of Cyclic Halides
In a typical experiment dicobalt hexacarbonyl complex 1c (0.41 mmol, 200 mg, 1.0 equiv) was dissolved in CH2Cl2 (3.5 mL, i.e., 8 mL/1 mmol) and 2.0 equiv of HBF4 (112 µL, 0.82 mmol) was added under nitrogen. After stirring for 10 min at r.t., the reaction mixture was concentrated under reduced pressure. The crude product was purified by liquid chromatography on silica gel eluting with pentane to afford 4c (133 mg, 0.27 mmol, 67%) as a mixture of two diastereomers in a 66:34 ratio.
Hexacarbonyl[-η
4
-{[(3-fluorocyclohexyl)ethynyl]benz-ene}]dicobalt (
4c)
Compound cis-4c: 1H NMR (300 MHz, CDCl3): δ = 1.23-1.39 (m, 2 H), 1.58-1.58 (m, 3 H), 1.98-2.24 (m, 2 H), 2.53 (br s, 1 H), 3.04 (br t, 1 H, J = 11.9 Hz), 4.68 (dtt, 1 H,
²
J
HF
= 48.3 Hz, J = 10.2, 5.1 Hz), 7.28-7.40 (m, 3 H), 7.49-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 23.5 (d,
³
J
CF
= 12.0 Hz, CH2), 32.8 (d,
²
J
CF
= 18.0 Hz, CH2), 34.5 (CH2), 40.3 (d,
³
J
CF
= 12.0 Hz, CH), 41.6 (d,
²
J
CF
= 18.0 Hz, CH2), 91.7 (d,
¹
J
CF
= 174.0 Hz, CH), 97.0 (C), 104.0 (C), 128.1 (CH), 129.3 (CH), 129.5 (CH), 138.5 (C), 200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -168.5.
Compound trans-4c: 1H NMR (300 MHz, CDCl3): δ = 1.32-1.62 (m, 3 H), 1.74 (m, 1 H), 1.90 (qt, 1 H, J = 13.6, 3.6 Hz), 2.07-2.17 (m, 2 H), 2.43 (m, 1 H), 3.42 (tt, 1 H, J = 12.1, 3.2 Hz), 5.04 (br d, 1 H,
²
J
HF
= 47.6 Hz), 7.28-7.50 (m, 3 H), 7.52-7.54 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 20.7 (CH2), 30.5 (d,
²
J
CF
= 21.0 Hz, CH2), 34.9 (CH2), 36.3 (CH), 39.7 (d,
²
J
CF
= 21.0 Hz, CH2), 89.5 (d,
¹
J
CF
= 168.0 Hz, CH), 91.8 (C), 105.4 (C), 128.1 (CH), 129.3 (CH), 129.6 (CH), 138.6 (C), 200.1 (CO). 19F NMR (286 MHz, CDCl3): δ = -183.3.
Anal. Calcd for C19H15Co2FO5: C, 49.59; H, 3.29. Found: C, 49.96; H, 3.30.
[13]
Typical Experimental Procedure for the Preparation of Cyclic Amides
In a typical experiment, dicobalt hexacarbonyl complex 1c (200 mg, 0.41 mmol, 1.0 equiv) was dissolved in MeCN (4 mL, 9 mL/1 mmol) and 1.1 equiv of TfOH (40 µL, 0.45 mmol) was added under nitrogen. After stirring for 10 min at r.t., the reaction mixture was quenched with H2O and extracted with CH2Cl2 (2×). The combined organic layers were washed with brine, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with 50:50 pentane-EtOAc to afford 5c (198 mg, 0.38 mmol, 92%) as a single cis-isomer.
cis
-Hexacarbonyl[µ-η
4
-{
N
-[(3-phenylethynyl)cyclo-hexyl]acetamide}]dicobalt (
5c)
1H NMR (300 MHz, CDCl3): δ = 1.11-1.32 (m, 4 H), 1.63 (qt, 1 H, J = 13.2, 3.0 Hz), 1.98 (s, 3 H), 2.06-2.13 (m, 2 H), 2.30-2.38 (m, 1 H), 3.11 (tt, 1 H, J = 11.5, 3.4 Hz), 4.04 (tdt, 1 H, J = 11.9, 8.3, 3.6 Hz), 5.44 (br d, 1 H, J = 8.3 Hz, NH), 7.29-7.45 (m, 3 H), 7.48-7.52 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 22.5 (CH3), 23.7 (CH2), 32.0 (CH2), 33.6 (CH2), 39.7 (CH), 40.4 (CH2), 47.0 (CH), 90.4 (C), 103.1 (C), 127.6 (CH), 127.9 (CH), 128.1 (CH), 137.1 (C), 168.1 (CO), 198.6 (CO).
HRMS (TOF MS ES+): m/z calcd [M + 1] for C22H19NO7Co2 [MH+]: 527.9898; found: 527.9898.
Elemental analysis is in agreement with the loss of carbon monoxide during the inlet of the sample in the combustion chamber. Unfortunately, HRMS could not be obtained. This compound of low polarity could not be ionized by the electrospray technique at our disposal.