Endoscopy 2007; 39(4): 350-356
DOI: 10.1055/s-2007-966262
Original article

© Georg Thieme Verlag KG Stuttgart · New York

In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases

M.  Goetz1 [*] , C.  Fottner1 [*] , E.  Schirrmacher2 , P.  Delaney3 , S.  Gregor1 , C.  Schneider1 , D.  Strand1 , S.  Kanzler1 , B.  Memadathil1 , E.  Weyand1 , M.  Holtmann1 , R.  Schirrmacher2 , M.  M.  Weber1 , M.  Anlauf4 , G.  Klöppel4 , M.  Vieth5 , P.  R.  Galle1 , P.  Bartenstein2 , M.  F.  Neurath1 [#] , R.  Kiesslich1 [#]
  • 1Medical Clinic I, University of Mainz, Mainz, Germany
  • 2Department of Nuclear Medicine, University of Mainz, Mainz, Germany
  • 3Optiscan Pty Ltd., Notting Hill, Victoria, Australia
  • 4Institute of Pathology, University of Kiel, Kiel, Germany
  • 5Institute of Pathology, Bayreuth, Germany
Weitere Informationen

Publikationsverlauf

submitted 21 September 2006

accepted after revision 21 November 2006

Publikationsdatum:
11. April 2007 (online)

Background and study aims: Although various improvements in tissue imaging modalities have recently been achieved, in-vivo molecular and subsurface imaging in the field of gastroenterology remains a technical challenge. In this study we evaluated a newly developed, handheld, miniaturized confocal laser microscopy probe for real-time in-vivo molecular and subsurface imaging in rodent models of human disease.

Materials and methods: The minimicroscope uses a 488-nm, single line laser for fluorophore excitation. The optical slice thickness is 7 μm, the lateral resolution 0.7 μm. The range of the z-axis is 0 - 250 μm below the tissue surface. Imaging was performed using different fluorescent staining protocols; 5-carboxyfluorescein-labeled octreotate was synthesized for targeted molecular imaging.

Results: Cellular and subcellular details of the gastrointestinal tract could be visualized in vivo at high resolution. Confocal real-time microscopy allowed in-vivo identification of tumor vessels and liver metastases, as well as diagnosis of focal hepatic inflammation, necrosis, and associated perfusion anomalies. Somatostatin-receptor targeting permitted in-vivo molecular staining of AR42-J-induced carcinoma and pancreatic islet cells.

Conclusions: Confocal mini-microscopy allows rapid in-vivo molecular and subsurface imaging of normal and pathological tissue in the gastrointestinal tract at high resolution. Because this technology is applicable to humans, it might impact on future in-vivo microsocpic and molecular diagnosis of diseases such as cancer and inflammation.

References

  • 1 Stephens D, Allan V J. Light microscopy techniques for in vivo imaging.  Science. 2003;  300 82-86
  • 2 Wright S J, Wright D J. Introduction to confocal microscopy.  Methods Cell Biol. 2002;  70 1-85
  • 3 Dacosta R S, Wilson B C, Marcon M E. New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions.  J Gastroenterol Hepatol. 2002;  17 S85-S104
  • 4 Sokolov K, Aaron J, Hsu B. et al . Optical systems for in vivo molecular imaging of cancer.  Technol Cancer Res Treat. 2003;  2 491-504
  • 5 Flusberg B A, Cocker E D, Piyawattanametha W. et al . Fiber-optic fluorescence imaging.  Nat Methods. 2005;  2 941-950
  • 6 Kiesslich R, Burg J, Vieth M. et al . Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo.  Gastroenterology. 2004;  127 706-713
  • 7 Nathanson M H. Confocal colonoscopy: more than skin deep.  Gastroenterology. 2004;  127 987-989
  • 8 Schirrmacher E, Schirrmacher R, Beck C. et al . Synthesis of a Tyr3-octreotate conjugated closo-carborane (HC2B10H10): a potential compound for boron neutron capture therapy.  Tetrahedron Letters. 2003;  44 9143-9145
  • 9 Weber P, Bader J, Folkers G. et al . A fast and inexpensive method for N-terminal fluorescein-labeling of peptides.  Bioorg Med Chem Lett. 1998;  8 597-600
  • 10 Anlauf M, Perren A, Meyer C L. et al . Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas.  Gastroenterology. 2005;  128 1187-1198
  • 11 Becker C, Fantini M C, Schramm C. et al . TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling.  Immunity. 2004;  21 491-501
  • 12 Perez J, Viollet C, Doublier S. et al . Somatostatin binds to murine macrophages through two distinct subsets of receptors.  J Neuroimmunol. 2003;  138 38-44
  • 13 Sakashita M, Inoue H, Kashida H. et al . Virtual histology of colorectal lesions using laser-scanning confocal microscopy.  Endoscopy. 2003;  35 1033-1038
  • 14 Inoue H, Igari T, Nishikage T. et al . A novel method of virtual histopathology using laser-scanning confocal microscopy in-vitro with untreated fresh specimens from the gastrointestinal mucosa.  Endoscopy. 2000;  32 439-443
  • 15 Keller R, Winde G, Terpe H J. et al . Fluorescence endoscopy using a fluorescein-labelled monoclonal antibody against carcinoembryonic antigen in patients with colorectal carcinoma and adenoma.  Endoscopy. 2002;  34 801-807
  • 16 Weissleder R, Tung C H, Mahmood U. et al . In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.  Nat Biotech. 1999;  17 375-378
  • 17 Kelly K, Alencar H, Funovics M. et al . Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide.  Cancer Res. 2004;  64 6247-6251
  • 18 Hsu E R, Anslyn E V, Dharmawardhane S. et al . A far-red fluorescent contrast agent to image epidermal growth factor receptor expression.  Photochem Photobiol. 2004;  79 272-279

1 * The first two authors contributed equally to this paper.

2 # These authors share senior authorship.

M. Goetz, MD

Medizinische Klinik I

Johannes Gutenberg-Universität Mainz

Langenbeckstr. 1

55131 Mainz

Germany

Fax: +49-6131-17-6416

eMail: mgoetz@mail.uni-mainz.de