Synthesis 2007(6): 893-901  
DOI: 10.1055/s-2007-965947
PAPER
© Georg Thieme Verlag Stuttgart · New York

New Anthracenyl-Substituted Phosphonates: Synthesis and Utility

K. C. Kumara Swamy*, Venu Srinivas, K. V. P. Pavan Kumar, K. Praveen Kumar
School of Chemistry, University of Hyderabad, Hyderabad 500046, India
Fax: +91(40)23012460; e-Mail: kckssc@uohyd.ernet.in;
Further Information

Publication History

Received 26 October 2006
Publication Date:
20 February 2007 (online)

Abstract

Chlorination of α-hydroxyphosphonate anthracen-9-yl(5,5-dimethyl-2-oxo-2λ5-1,3,2-dioxaphosphinan-2-yl)methanol (11) using thionyl chloride unexpectedly yields 10-(5,5-dimethyl-2-oxo-2λ5-1,3,2-dioxaphosphinan-2-ylmethylene)anthracen-9(10H)-one (13), 2-(10-chloroanthracen-9-ylmethyl)-5,5-dimethyl-2λ5-1,3,2-dioxaphosphinan-2-one (14), and 10-(5,5-dimethyl-2-oxo-2λ5-1,3,2-dioxaphosphinan-2-ylmethylene)-9,10-dihydroanthracen-9-ol (15) in addition to 2-[anthracen-9-yl(chloro)methyl]-5,5-dimethyl-2λ5-1,3,2-dioxaphosphinan-2-one (12). The reaction of 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphinane (5) with 9-anthraldehyde leads to 2-chloro-1,1-dimethylethyl hydrogen 10-(5,5-dimethyl-2-oxo-2λ5-1,3,2-dioxaphosphinan-2-ylmethylene)-4a,9,9a,10-tetrahydroanthracen-9-ylphosphonate (20) in addition to 12. Bromination of 11 with phosphorus tribromide affords the 10-bromoanthracen-9-yl product, 2-(10-bromoanthracen-9-ylmethyl)-5,5-dimethyl-2λ5-1,3,2-dioxaphosphinan-2-one (22). Reaction of 12 with 4-chloro- or 4-nitrobenzaldehyde in the presence of sodium hydride affords the products, 9-(2-arylvinyl)anthracenes 23 and 24 in an uncommon Horner-Wadsworth-Emmons-type reaction. Compound 22 underwent the normal Horner-Wadsworth-Emmons reaction with benzaldehydes or ferrocenecarbaldehyde to afford disubstituted alkenes. One of these alkenes, (E)-9-bromo-10-[2-(4-bromophenyl)vinyl]anthracene (26), undergoes Sonogashira coupling with terminal alkynes to afford the conjugated alkynes (E)-9-bromo-10-[2-(4-ethynylphenyl)vinyl]anthracenes 30-32 in moderate yields. X-ray crystal structures of 12-15, 20, 23 and (E)-9-bromo-10-[2-(4-methoxyphenyl)vinyl]anthracene (27) have been determined.

    References

  • 1a Kim Y.-H. Shin D.-C. Kim S.-H. Ko C.-H. Yu H.-S. Chae Y.-S. Kwon S.-K. Adv. Mater.  2001,  13:  1690 
  • 1b Ito K. Suzuki T. Sakamoto Y. Kubota D. Inoue Y. Sato F. Tokito S. Angew. Chem. Int. Ed.  2003,  42:  1159 
  • 1c Ando S. Nishda J.-i. Fujiwara E. Tada H. Inoue Y. Tokito S. Yamashita Y. Chem. Mater.  2005,  17:  1261 
  • 1d Sasaki H. Wakayama Y. Chikyow T. Barrena E. Dosch H. Kobayashi K. Appl. Phys. Lett.  2006,  88:  081907 
  • 1e Cui W. Zhang X. Jiang X. Tian H. Yan D. Geng Y. Jing X. Wang F. Org. Lett.  2006,  8:  785 
  • Photoswitches:
  • 2a Schafer C. Mattay J. Photochem. Photobiol. Sci.  2004,  3:  331 
  • Switch:
  • 2b Callan JF. De Silva AP. McClenaghan ND. Chem. Commun.  2004,  2048 
  • OLED, DFT calculations:
  • 2c Raghunath P. Reddy MA. Gouri C. Bhanuprakash K. Jayathirtha Rao V. J. Phys. Chem. A  2006,  110:  1152 
  • 3 Bailey D. Williams VE. Chem. Commun.  2005,  2569 
  • 4a Becker HD. Chem. Rev.  1993,  93:  145 
  • 4b Laurent HB. Castellan A. Desvergne J.-P. Lapouyade R. Chem. Soc. Rev.  2000,  29:  43 
  • 4c Ihmels H. Leusser D. Pfeiffer M. Stalke D. Tetrahedron  2000,  56:  6867 
  • 4d Jones S. Atherton JCC. Tetrahedron: Asymmetry  2001,  12:  1117 
  • 4e Atherton JCC. Jones S. Tetrahedron Lett.  2002,  43:  9097 
  • Diels-Alder reaction:
  • 4f Bawa RA. Jones S. Tetrahedron  2004,  60:  2765 
  • 4g Atherton JCC. Jones S. Tetrahedron  2003,  59:  9039 
  • 4h Horiguchi M. Ito Y. J. Org. Chem.  2006,  71:  3608 
  • 5 Iwamoto E. Hirai K. Tomioka H. J. Am. Chem. Soc.  2003,  125:  14664 
  • DNA cleavage, anthracene derivatives:
  • 6a Tan WB. Bhambhani A. Duff MR. Rodger A. Kumar CV. Photochem. Photobiol.  2006,  82:  20 
  • 6b Ghosh T. Maiya BG. Samanta A. Shukla AD. Jose DA. Kumar DK. Das A. J. Biol. Inorg. Chem.  2005,  10:  496 
  • 6c Marques F. Paulo A. Campello MP. Lacerda S. Vitor RF. Gano L. Delgado R. Santos I. Radiat. Prot. Dosim.  2005,  116:  601 
  • 7 Cakmak O. Erenler R. Tutar A. Celik N. J. Org. Chem.  2006,  71:  1795 
  • Reports in which such anthracenyl compounds are utilized for two photon cross-sections:
  • 8a Yang WJ. Kim CH. Jeong M.-Y. Lee SK. Piao MJ. Jeon S.-J. Cho BR. Chem. Mater.  2004,  16:  2783 
  • Phosphonate:
  • 8b Lee SK. Yang WJ. Choi JJ. Kim CH. Jeon S.-J. Cho BR. Org. Lett.  2005,  7:  323 
  • 9a Kumaraswamy S. Selvi RS. Kumara Swamy KC. Synthesis  1997,  207 
  • 9b Praveen Kumar K. Muthiah C. Kumaraswamy S. Kumara Swamy KC. Tetrahedron Lett.  2001,  42:  3219 
  • 9c Muthiah C. Praveen Kumar K. Aruna Mani C. Kumara Swamy KC. J. Org. Chem.  2000,  65:  3733 
  • 10 Iorga B. Eymery F. Savignac P. Tetrahedron  1999,  55:  2671 
  • 11 Firouzabadi H. Iranpoor N. Sobhani S. Tetrahedron  2004,  60:  203 
  • 13 Said MA. Kumara Swamy KC. Chandra Mohan K. Venkata Lakshmi N. Tetrahedron  1994,  50:  6989 
  • 14 Shokol VA. Kozhushko BN. Russ. Chem. Rev.  1985,  54:  98 
  • 15 Duan S. Turk J. Speigle J. Corbin J. Masnovi J. Baker RJ. J. Org. Chem.  2000,  65:  3005 
  • There is a possibility that compound 12 and its anion react with each other in a disproportionation-like reaction to form a low equilibrium concentration of the corresponding α,α-dichlorophosphonate plus the nonchlorinated phosphonate anion. The latter presumably reacts much faster with the aldehyde than does the anion of compound 12. However, the dichlorophosphonate could not be detected in the crude product mixture [31P/1H NMR]. In the normal reaction, the C-Cl moiety is retained: see:
  • 16a Kumaraswamy S. Kumara Swamy KC. Tetrahedron Lett.  1997,  38:  2183 
  • 16b Muthiah C. Praveen Kumar K. Kumaraswamy S. Kumara Swamy KC. Tetrahedron  1998,  54:  14315 
  • 18a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • 18b Negishi E. Anastasia L. Chem. Rev.  2003,  103:  1979 
  • 19 Perrin DD. Armarego WLF. Perrin DR. Purification of Laboratory Chemicals   Pergamon; Oxford: 1986. 
  • A program for crystal structure solution and refinement:
  • 20a Sheldrick GM. SHELX-97   University of Göttingen; Germany: 1997. 
  • 20b Sheldrick GM. SADABS, Siemens Area Detector Absorption Correction   University of Göttingen; Germany: 1996. 
  • 20c Sheldrick GM. SHELXTLNT Crystal Structure Analysis Package   Version 5.10:  Bruker Analytical X-ray System; WI: 1999. 
12

In normal Horner-Wadsworth-Emmons reactions, hydrogen is eliminated by the base to produce the carbanion, which then reacts with the aldehyde.

17

We have also observed two butadiene products of very close TLC R f values from the reaction of 12 with using cinnamaldehyde. One of these contains hydrogen at the C10 (product a) and the second one (product b) does not [1H NMR (400 MHz, CDCl3): product a: δ = 6.75 (d, J = 16.0 Hz, 1 H, olefinic-H), 6.84 (dd, J = 10.8, 16.0 Hz, 1 H, olefinic-H), 7.25-7.58 (m, 11 H, phenyl-H, anthryl-H), 8.03, 8.37 (d with virtual coupling, 4 H, anthryl-H), 8.42 (s, 1 H, anthryl-H). Product b: δ = 6.74-6.82 (m, 2 H, olefinic-H), 7.25-7.66 (m, 11 H, phenyl-H, anthryl-H, olefinic-H), 8.38 (d, J = 8.8 Hz, 2 H, anthryl-H), 8.58 (d, J = 8.8 Hz, 2 H, anthryl-H)].