Synthesis 2007(4): 613-621  
DOI: 10.1055/s-2007-965891
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Symmetrically and Unsymmetrically para-Functionalized p-Quaterphenylenes

Manuela Schieka, Katharina Al-Shamerya, Arne Lützen*b
a University of Oldenburg, Institute of Pure and Applied Chemistry, P.O. Box 2503, 26111 Oldenburg, Germany
b University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
Fax: +49(228)739608; e-Mail: arne.luetzen@uni-bonn.de;
Further Information

Publication History

Received 3 November 2006
Publication Date:
12 January 2007 (online)

Abstract

Oligo-p-phenylenes have proven to be versatile building blocks for the generation of self-assembled nanoaggregates with interesting optical properties via vapor deposition on solid supports. Preliminary studies have shown that both the properties and the morphologies of these aggregates can be influenced by the introduction of functional groups. To this end, we have developed general approaches to the synthesis of symmetrically and unsymmetrically 1,4′′′-substituted p-quaterphenylenes through the application of a reliable Suzuki cross-coupling strategy.

    References

  • 1a Müllen K. Wegner G. Electronic Materials: The Oligomer Approach   Wiley-VCH; Weinheim: 1998. 
  • 1b Fichou D. Handbook of Oligo- and Polythiophenes   Wiley-VCH; Weinheim: 1999. 
  • 1c Nalva HS. Handbook of Advanced Electronic and Photonic Materials and Devices   Academic Press; San Diego: 2000. 
  • 1d Müllen K. Scherf U. Organic Light Emitting Devices - Synthesis, Properties and Applications   Wiley-VCH; Weinheim: 2006. 
  • 1e Klauk H. Organic Electronics - An Industrial Perspective   Wiley-VCH; Weinheim: 2006. 
  • 2a Schwab PFH. Levin MD. Michl J. Chem. Rev.  1999,  99:  1863 
  • 2b Schwab PFH. Smith JR. Michl J. Chem. Rev.  2005,  105:  1197 
  • 3 Ziegler G. In Handbook of Organic Conductive Molecules and Polymers   Vol. 3:  Nalwa HS. Wiley; New York: 1997.  Chap. 13.
  • 4a Krause B. Dürr AC. Ritley K. Schreiber F. Dosch H. Smilgies D. Phys. Rev. B: Condens. Matter Mater. Phys.  2002,  66:  235404 
  • 4b Würthner F. Chem. Commun.  2004,  1564 
  • 5 Bendikov M. Wudl F. Perepichka DF. Chem. Rev.  2004,  104:  4891 
  • 6 James DK. Tour JM. Top. Curr. Chem.  2005,  257:  33 
  • 7a Resel R. Thin Solid Films  2003,  433:  1 
  • 7b Balzer F. Rubahn H.-G. Adv. Funct. Mater.  2005,  14:  17 
  • 7c Balzer F. Rubahn H.-G. Phys. Unserer Zeit  2005,  36:  36 
  • 8a Witte G. Woell C. J. Mater. Res.  2004,  19:  1889 
  • 8b Hertel D. Müller CD. Meerholz K. Chem. Unserer Zeit  2005,  39:  336 
  • 9a Balzer F. Rubahn H.-G. Appl. Phys. Lett.  2001,  79:  2860 
  • 9b Balzer F. Rubahn H.-G. Surf. Sci.  2002,  507:  588 
  • 10 Yanagi H. Morikawa T. Appl. Phys. Lett.  1999,  75:  187 
  • 11a Balzer F. Bordo VG. Simonsen AC. Rubahn H.-G. Appl. Phys. Lett.  2003,  82:  10 
  • 11b Balzer F. Bordo VG. Simonsen AC. Rubahn H.-G. Phys. Rev. B: Condens. Matter Mater. Phys.  2003,  67:  115408 
  • 12a Quochi F. Cordella F. Orrì R. Communal JE. Verzeroli P. Mura A. Bongiovanni G. Andreev A. Sitter H. Sariciftci NS. Appl. Phys. Lett.  2004,  84:  4454 
  • 12b Quochi F. Cordella F. Mura A. Bongiovanni G. Balzer F. Rubahn H.-G. J. Phys. Chem. B  2005,  109:  21690 
  • 12c Quochi F. Cordella F. Mura A. Bongiovanni G. Balzer F. Rubahn H.-G. Appl. Phys. Lett.  2006,  88:  041106 
  • 13 Kjelstrup-Hansen J. Henrichsen HH. Bøggild P. Rubahn H.-G. Thin Solid Films  2006,  515:  827 
  • 14 Henrichsen HH. Kjelstrup-Hansen J. Engstroem D. Clausen CH. Bøggild P. Rubahn H.-G. Appl. Phys. A  2006, submitted
  • 15 Kjelstrup-Hansen J. Bøggild P. Rubahn H.-G. J. Phys. C  2006, submitted
  • 16a Schiek M. Lützen A. Koch R. Al-Shamery K. Balzer F. Frese R. Rubahn H.-G. Appl. Phys. Lett.  2005,  86:  153107 
  • 16b Schiek M. Lützen A. Al-Shamery K. Balzer F. Rubahn H.-G. Surf. Sci.  2006,  600:  4030 
  • 16c Schiek M. Lützen A. Al-Shamery K. Balzer F. Rubahn H.-G. Cryst. Growth Des.  2006, accepted for publication
  • 17 Brewer J. Schiek M. Lützen A. Al-Shamery K. Rubahn H.-G. Nano Lett.  2006,  6:  2656 
  • 18 Schmidt H. Schultz G. Justus Liebigs Ann. Chem.  1880,  203:  129 
  • 19a Scheinbaum ML. J. Chem. Soc., Chem. Commun.  1969,  1235 
  • 19b Pavlopoulos TG. Hammond PR. J. Am. Chem. Soc.  1974,  96:  6568 
  • 20a Keegstra MA. De Feyter S. De Schryver FC. Müllen K. Angew. Chem., Int. Ed. Engl.  1996,  35:  774 ; Angew. Chem. 1996, 108, 830
  • 20b Iyer VS. Wehmeier M. Brand JD. Keegstra MA. Müllen K. Angew. Chem., Int. Ed. Engl.  1997,  36:  1604 ; Angew. Chem. 1997, 109, 1676
  • 20c Müller M. Iyer VS. Kübel C. Enkelmann V. Müllen K. Angew. Chem., Int. Ed. Engl.  1997,  36:  1607 ; Angew. Chem. 1997, 109, 1679
  • 20d Fechtenkötter A. Saalwächter K. Harbison MA. Müllen K. Spiess HW. Angew. Chem. Int. Ed.  1999,  38:  3039 ; Angew. Chem. 1999, 111, 3224
  • 20e Ito S. Herwig PT. Böhme T. Rabe JP. Rettig W. Müllen K. J. Am. Chem. Soc.  2000,  122:  7698 
  • 21a Stille JK. Rakutis RO. Mukamal H. Harris FW. Macromolecules  1968,  1:  431 
  • 21b Morgenroth F. Reuther E. Müllen K. Angew. Chem., Int. Ed. Engl.  1997,  36:  631 ; Angew. Chem. 1997, 109, 647
  • 21c Wiesler U.-M. Müllen K. Chem. Commun.  1999,  2293 
  • 21d Dötz F. Brand JD. Ito S. Gherghel L. Müllen K. J. Am. Chem. Soc.  2000,  122:  7707 
  • 21e Wiesler U.-M. Berresheim AJ. Morgenroth F. Lieser G. Müllen K. Macromolecules  2001,  34:  187 
  • 21f Weil T. Wiesler U.-M. Herrmann A. Bauer R. Hofkens J. De Schryver FC. Müllen K. J. Am. Chem. Soc.  2001,  123:  8101 
  • 21g Simpson CD. Brand JD. Berresheim AJ. Przybilla L. Räder HJ. Müllen K. Chem. Eur. J.  2002,  8:  1424 
  • 22 Subramaniam G. Gilpin RK. Synthesis  1992,  1232 
  • 23a Hart H. Harada K. Tetrahedron Lett.  1985,  26:  29 
  • 23b Hart H. Harada K. Frank Du C.-J. J. Org. Chem.  1985,  50:  3104 
  • 23c Harada K. Hart H. Frank Du C.-J. J. Org. Chem.  1985,  50:  5524 
  • 23d Frank Du C.-J. Hart H. Ng K.-KD. J. Org. Chem.  1986,  51:  3162 
  • 24a Rebmann A. Zhou J. Schuler P. Stegmann HB. Rieker A. J. Chem. Res., Synop.  1996,  318 
  • 24b Rebmann A. Zhou J. Schuler P. Rieker A. Stegmann HB. J. Chem. Soc., Perkin Trans. 2  1997,  1615 
  • 25 Harley-Mason J. Mann FG. J. Chem. Soc.  1940,  1379 
  • 26a Metal-catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 26b Lie JJ. Gribble GW. Palladium in Heterocyclic Chemistry   Pergamon Press, Elsevier; Amsterdam: 2000. 
  • 26c Cross-Coupling Reactions   Miyaura N. Springer; Berlin: 2002. 
  • 26d For a special issue on cross-coupling reactions, see: Tamao K. Hiyama T. Negishi E. J. Organomet. Chem.  2002,  653:  1 
  • For examples of the application of nickel-catalyzed Kharash couplings for the synthesis of oligo-p-phenylenes, see:
  • 27a Saitoh H. Saito K. Yamamura Y. Matsuyama H. Kikuchi K. Iyoda M. Ikemoto I. Bull. Chem. Soc. Jpn.  1993,  66:  2847 
  • 27b Ung VA. Bardwell DA. Jeffery JC. Maher JP. McCleverty JA. Ward MD. Williamson A. Inorg. Chem.  1996,  35:  5290 
  • 27c Abdul-Rahman A. Amoroso AA. Branston TN. Das A. Maher JP. McCleverty JA. Ward MD. Wlodarczyk A. Polyhedron  1997,  16:  4353 
  • For examples of the application of palladium-catalyzed Kharash couplings for the synthesis of oligo-p-phenylenes, see:
  • 28a Kallitsis JK. Kakali F. Gravalos KG. Macromolecules  1994,  27:  4509 
  • 28b Kallitsis JK. Gravalos KG. Hilberer A. Hadziioannou G. Macromolecules  1997,  30:  2989 
  • 28c Kauffmann JM. Synthesis  1999,  918 
  • 28d Rathore R. Burns CL. Deselnicu MI. Org. Lett.  2001,  3:  2887 
  • For examples of the application of palladium-catalyzed Suzuki couplings for the synthesis of oligo-p-phenylenes, see:
  • 29a Liess P. Hensel V. Schlüter A.-D. Liebigs Ann.  1996,  1037 
  • 29b Fran J. Karakaya B. Schäfer A. Schlüter AD. Tetrahedron  1997,  53:  15459 
  • 29c Hensel V. Schlüter A.-D. Chem. Eur. J.  1999,  5:  421 
  • 29d Sakai N. Brennan KC. Weiss LA. Matile S. J. Am. Chem. Soc.  1997,  119:  8726 
  • 29e Ghebremariam B. Matile S. Tetrahedron Lett.  1998,  39:  5335 
  • 29f Ghebremariam B. Sidorov V. Matile S. Tetrahedron Lett.  1999,  40:  1445 
  • 29g Winum J.-Y. Matile S. J. Am. Chem. Soc.  1999,  121:  7961 
  • 29h Robert F. Winum J.-Y. Sakai N. Gerard D. Matile S. Org. Lett.  2000,  2:  37 
  • 29i Sakai N. Gerard D. Matile S. J. Am. Chem. Soc.  2001,  123:  2517 
  • 29j Sakai N. Matile S. J. Am. Chem. Soc.  2002,  124:  1184 
  • 29k Galda P. Rehahn M. Synthesis  1996,  614 
  • 29l Kim S. Jackiw J. Robinson E. Schanze KS. Reynolds JR. Macromolecules  1998,  31:  964 
  • 29m Goldfinger MB. Crawford KB. Swager TM. J. Org. Chem.  1998,  63:  1676 
  • 29n Konstandakopoulou FD. Gravalos KG. Kallitsis JK. Macromolecules  1998,  31:  5264 
  • 29o Morikawa A. Macromolecules  1998,  31:  5999 
  • 29p Schlicke B. Belser P. De Cola L. Sabbioni E. Balzani V. J. Am. Chem. Soc.  1999,  121:  4207 
  • 29q Taylor PN. O’Connell MJ. McNeill LA. Hall MJ. Alpin RT. Anderson HL. Angew. Chem. Int. Ed.  2000,  39:  3456 ; Angew. Chem. 2000, 112, 3598
  • 29r Read MW. Escobedo JO. Willis DM. Beck PA. Strongin RM. Org. Lett.  2000,  2:  3201 
  • 29s Hwang S.-W. Chen Y. Macromolecules  2001,  34:  2981 
  • 29t Park J.-W. Ediger MD. Green MM. J. Am. Chem. Soc.  2001,  123:  49 
  • 29u Deng X. Mayeux A. Cai C. J. Org. Chem.  2002,  67:  5279 
  • 29v Lightowler S. Hird M. Chem. Mater.  2004,  16:  3963 
  • 29w Lightowler S. Hird M. Chem. Mater.  2005,  27:  5538 
  • 30a Percec V. Okita S. J. Polym. Sci., Part A: Polym. Chem.  1993,  31:  877 
  • 30b Morikawa A. Macromolecules  1998,  31:  5999 
  • 30c Li ZH. Wong MS. Tao Y. D’Iorio M. J. Org. Chem.  2004,  69:  921 
  • 30d Lee M. Jang C.-J. Ryu J.-H. J. Am. Chem. Soc.  2004,  126:  8082 
  • 30e Ryu J.-H. Jang C.-J. Yoo Y.-S. Lim S.-G. Lee M. J. Org. Chem.  2005,  70:  8956 
  • 30f Welter S. Salluce N. Benetti A. Rot N. Belser P. Sonar P. Grimsdale AC. Müllen K. Lutz M. Spek AL. de Cola L. Inorg. Chem.  2005,  44:  4706 
  • 31 Broutin PE. Cerna I. Campaniello M. Leroux F. Colobert F. Org. Lett.  2004,  6:  4419 
  • 32a Thiemann F. Piehler T. Haase D. Saak W. Lützen A. Eur. J. Org. Chem.  2005,  1991 
  • 32b Pushechnikov O. Ivonin SP. Chaikovskaya AA. Kudrya TN. Pirozhenko VV. Tolmachev AA. Chem. Heterocycl. Compd.  1999,  35:  1313 ; without synthetic details or characterization
  • In fact this compound is commercially available and its synthesis has been previously described using different approaches, see:
  • 33a Han Y. Walker SD. Young RN. Tetrahedron Lett.  1996,  37:  2703 
  • 33b Spivey AC. Diaper CM. Rudge AJ. Chem. Commun.  1999,  835 
  • 33c Spivey AC. Diaper CM. Adams H. Rudge AJ. J. Org. Chem.  2000,  65:  5253 
  • 33d Sinclair DJ. Sherburn MS. J. Org. Chem.  2005,  70:  3730 . However, no NMR or MS data were provided
  • This compound has been previously synthesized using a different approach, see:
  • 35a Pummerer R. Sellsberger L. Ber. Dtsch. Chem. Ges. B.  1931,  64:  2477 
  • 35b McNamara JM. Gleason WB. J. Org. Chem.  1976,  41:  1071 . However, no NMR or MS data were provided
  • This compound is commercially available and its synthesis has been previously described using different approaches, see:
  • 36a Sedov AM. Sergeeva AA. Novikov AN. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.  1970,  13:  591 ; Chem. Abstr. 1970, 73, 87559
  • 36b Rottaelander M. Palmer N. Knochel P. Synlett  1996,  573 
  • 36c Sinclair DJ. Sherburn MS. J. Org. Chem.  2005,  70:  3730.  However, no NMR or MS data were provided
  • This compound has been previously synthesized using a different approach, see:
  • 37a Theilacker W. Schmid W. Chem. Ber.  1951,  84:  204 
  • 37b Theilacker W. Berger W. Popper P. Chem. Ber.  1956,  89:  970.  However, no NMR or MS data were provided
  • 38 This compound has been previously synthesized using a different approach, see: Amatore C. Jutand A. Negre S. Fauvarque JF. J. Organomet. Chem.  1990,  390:  389 
  • 39 This compound has been previously synthesized using a different approach, see: Novikov AN. Khalimova TA. Zh. Vses. Khim. O-va. im. D. I. Mendeleeva  1962,  7:  698 ; Chem. Abstr. 1962, 58, 66196. However, no NMR or MS data were provided
  • 40 This compound has been previously synthesized using a different approach, see ref. 25, 27b and 27c. See also: Ronlan A. Coleman J. Hammerich O. Parker VD. J. Am. Chem. Soc.  1974,  96:  845 
  • This compound has been previously synthesized using a different approach though no spectroscopical data were given, see ref. 30a and:
  • 41a Jutand A. Mosleh A. Synlett  1993,  568 
  • 41b Jutand A. Mosleh A. J. Org. Chem.  1997,  62:  261 
  • 42 The formation of this compound has been postulated as an undesired by-product in the synthesis of triarylmethane dyes; however, no analytical or structural data was given, see: Theilacker W. Berger W. Popper P. Chem. Ber.  1956,  89:  970 
34

In fact this compound is commercially available and its synthesis has been previously described using a different approach, see ref. 33a. However, no NMR or MS data were provided.