Pneumologie 2007; 61(4): 249-255
DOI: 10.1055/s-2007-959172
Serie: Beatmungsmedizin (7)
© Georg Thieme Verlag Stuttgart · New York

Beatmung beim akuten Lungenversagen

Mechanical Ventilation of Acute Lung InjuryR.  Kuhlen1 , R.  Dembinski2
  • 1Klinik für Intensivmedizin, Helios Klinikum Berlin Buch
  • 2Operative Intensivmedizin, Universitätsklinikum Aachen, RWTH Aachen
Further Information

Publication History

Publication Date:
24 April 2007 (online)

Zusammenfassung

Das akute Lungenversagen stellt eines der wesentlichen Krankheitsbilder der modernen Intensivmedizin dar. Es ist durch einen akute, teilweise lebensbedrohliche Hypoxämie auf dem Boden einer Ventilations-Perfusions-Verteilungsstörung der Lunge gekennzeichnet. Diese wiederum ist Ausdruck der Abnahme der pulmonalen Gasaustauschfläche durch einen entweder primären oder sekundären pulmonalen Inflammationsprozess, von dem wir heute wissen, dass er nicht auf das Kompartiment Lunge beschränkt bleibt, sondern systemische Wirkung auf Hämodynamik und Funktion nicht pulmonaler Organsysteme entfaltet. Die maschinelle Beatmung ist von entscheidender Bedeutung bei der Therapie des Lungenversagens, mit dem Ziel die Hypoxämie durch Rekrutierung der Lunge zu beheben, ohne aber weitere Schäden durch Überblähung oder zyklischen Kollaps der Lunge in Exspiration zu verursachen. Hierzu wird auf dem Boden evidenter klinischer Daten heute das Konzept der protektiven Beatmung mit reduzierten Atemzugvolumina verfolgt, für das eine Reduktion der Letalität belegt ist. Darüber hinaus existieren verschiedene, pathophysiologisch teilweise faszinierende Ansätze zur erweiterten Therapie des beatmeten Patienten mit Lungenversagen, die in diesem Artikel dargestellt und im Hinblick auf ihren klinischen Stellenwert kritisch eingeordnet werden. In Anbetracht der Einfachheit des Konzeptes der protektiven Beatmung und des nach wie vor geringen Durchdringungsgrades dieser Therapie in der klinischen Praxis erscheint eine Fokussierung hierauf nach wie vor gerechtfertigt.

Abstract

Acute lung injury (ALI) is of paramount importance for modern intensive care since it is one of the most frequent conditions necessitating admission to an ICU. ALI is characterised by severe life threatening hypoxemia which is based on ventilation perfusion mismatching within the lung. This is mostly resulting from atelectasis formation due to primary or secondary inflammation of lung tissue. Many studies showed that this inflammatory process is not restricted to the respiratory system but might result in non pulmonary organ failure and hemodynamic compromise as well. Mechanical ventilation is considered the hallmark treatment for ALI patients aimed to recruit lung tissue and thereby reverse hypoxemia without causing additional lung injury potentially resulting from overdistention or cycling collapse during expiration. Scientific evidence shows us that prevention of ventilator induced lung injury by protective ventilation with reduced tidal volumes is resulting in better clinical outcomes. Moreover, different technologies and adjunctive therapies have been suggested based on their pathophysiology. All these treatment options will be summarized in this article. Given the clear evidence for protective ventilation and bearing in mind that clinical application of this easy concept is still not widespread we will focus on this aspect.

Literatur

  • 1 Sakr Y, Vincent J L, Reinhart K. et al . High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury.  Chest. 2005 Nov;  128 (5) 3098-3108
  • 2 Ashbaugh D G, Bigelow D B, Petty T L. et al . Acute respiratory distress in adults.  Lancet. 1967 Aug 12;  2 (7511) 319-323
  • 3 Ware L B, Matthay M A. The acute respiratory distress syndrome.  N Engl J Med. 2000 May 4;  342 (18) 1334-1349
  • 4 Gattinoni L, Caironi P, Pelosi P. et al . What has computed tomography taught us about the acute respiratory distress syndrome?.  Am J Respir Crit Care Med. 2001 Nov 1;  164 (9) 1701-1711
  • 5 Dantzker D R, Brook C J, Dehart P. et al . Ventilation-perfusion distributions in the adult respiratory distress syndrome.  Am Rev Respir Dis. 1979 Nov;  120 (5) 1039-1052
  • 6 Bernard G R, Artigas A, Brigham K L. et al . Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.  J Crit Care. 1994 Mar;  9 (1) 72-81
  • 7 Bernard G R, Artigas A, Brigham K L. et al . The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination.  Am J Respir Crit Care Med. 1994 Mar;  149 (3 Pt 1) 818-824
  • 8 Slutsky A S. Consensus conference on mechanical ventilation - January 28 - 30, 1993 at Northbrook, Illinois, USA. Part 2.  Intensive Care Med. 1994;  20 (2) 150-162
  • 9 Slutsky A S. Consensus conference on mechanical ventilation - January 28 - 30, 1993 at Northbrook, Illinois, USA. Part I. European Society of Intensive Care Medicine, the ACCP and the SCCM.  Intensive Care Med. 1994;  20 (1) 64-79
  • 10 Slutsky A S. Ventilator-induced lung injury: from barotrauma to biotrauma.  Respir Care. 2005 May;  50 (5) 646-659
  • 11 Kopp R, Kuhlen R, Max M. et al . Evidence-based medicine in the therapy of the acute respiratory distress syndrome.  Intensive Care Med. 2002 Mar;  28 (3) 244-255
  • 12 Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies.  Am J Respir Crit Care Med. 1998 Jan;  157 (1) 294-323
  • 13 Slutsky A S, Tremblay L N. Multiple system organ failure. Is mechanical ventilation a contributing factor?.  Am J Respir Crit Care Med. 1998 Jun;  157 (6 Pt 1) 1721-1725
  • 14 Tremblay L N, Slutsky A S. Ventilator-induced lung injury: from the bench to the bedside.  Intensive Care Med. 2006 Jan;  32 (1) 24-33
  • 15 Carney D, Dirocco J, Nieman G. Dynamic alveolar mechanics and ventilator-induced lung injury.  Crit Care Med. 2005 Mar;  33 (3) S122-S128
  • 16 Hickling K G, Walsh J, Henderson S. et al . Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study.  Crit Care Med. 1994 Oct;  22 (10) 1568-1578
  • 17 Amato M B, Barbas C S, Medeiros D M. et al . Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.  N Engl J Med. 1998 Feb 5;  338 (6) 347-354
  • 18 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.  N Engl J Med. 2000 May 4;  342 (18) 1301-1308
  • 19 Young M P, Manning H L, Wilson D L. et al . Ventilation of patients with acute lung injury and acute respiratory distress syndrome: has new evidence changed clinical practice?.  Crit Care Med. 2004 Jun;  32 (6) 1260-1265
  • 20 Gajic O, Frutos-Vivar F, Esteban A. et al . Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients.  Intensive Care Med. 2005 Jul;  31 (7) 922-926
  • 21 Kumar A, Falke K J, Geffin B. et al . Continuous positive-pressure ventilation in acute respiratory failure.  N Engl J Med. 1970 Dec 24;  283 (26) 1430-1436
  • 22 Falke K J, Pontoppidan H, Kumar A. et al . Ventilation with end-expiratory pressure in acute lung disease.  J Clin Invest. 1972 Sep;  51 (9) 2315-2323
  • 23 Suter P M, Fairley B, Isenberg M D. Optimum end-expiratory airway pressure in patients with acute pulmonary failure.  N Engl J Med. 1975 Feb 6;  292 (6) 284-289
  • 24 Pelosi P, Crotti S, Brazzi L. et al . Computed tomography in adult respiratory distress syndrome: what has it taught us?.  Eur Respir J. 1996 May;  9 (5) 1055-1062
  • 25 Brower R G, Lanken P N, MacIntyre N. et al . Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome.  N Engl J Med. 2004 Jul 22;  351 (4) 327-336
  • 26 Gattinoni L, Caironi P, Cressoni M. et al . Lung recruitment in patients with the acute respiratory distress syndrome.  N Engl J Med. 2006 Apr 27;  354 (17) 1775-1786
  • 27 Nieszkowska A, Lu Q, Vieira S. et al . Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure.  Crit Care Med. 2004 Jul;  32 (7) 1496-1503
  • 28 Henzler D, Dembinski R, Bensberg R. et al . Ventilation with biphasic positive airway pressure in experimental lung injury. Influence of transpulmonary pressure on gas exchange and haemodynamics.  Intensive Care Med. 2004 May;  30 (5) 935-943
  • 29 Hedenstierna G. Atelectasis formation and gas exchange impairment during anaesthesia.  Monaldi Arch Chest Dis. 1994 Sep;  49 (4) 315-322
  • 30 Jousela I, Linko K, Makelainen A. A comparison of continuous positive pressure ventilation, combined high frequency ventilation and airway pressure release ventilation on experimental lung injury.  Intensive Care Med. 1992;  18 (5) 299-303
  • 31 Putensen C, Rasanen J, Lopez F A. et al . Effect of interfacing between spontaneous breathing and mechanical cycles on the ventilation-perfusion distribution in canine lung injury.  Anesthesiology. 1994 Oct;  81 (4) 921-930
  • 32 Putensen C, Rasanen J, Lopez F A. Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury.  Am J Respir Crit Care Med. 1994 Jul;  150 (1) 101-108
  • 33 Putensen C, Zech S, Wrigge H. et al . Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury.  Am J Respir Crit Care Med. 2001 Jul 1;  164 (1) 43-49
  • 34 Langer M, Mascheroni D, Marcolin R. et al . The prone position in ARDS patients. A clinical study.  Chest. 1988 Jul;  94 (1) 103-107
  • 35 Pappert D, Rossaint R, Slama K. et al . Influence of positioning on ventilation-perfusion relationships in severe adult respiratory distress syndrome.  Chest. 1994 Nov;  106 (5) 1511-1516
  • 36 Blanch L, Mancebo J, Perez M. et al . Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome.  Intensive Care Med. 1997 Oct;  23 (10) 1033-1039
  • 37 Chatte G, Sab J M, Dubois J M. et al . Prone position in mechanically ventilated patients with severe acute respiratory failure.  Am J Respir Crit Care Med. 1997 Feb;  155 (2) 473-478
  • 38 Servillo G, Roupie E, De R E. et al . Effects of ventilation in ventral decubitus position on respiratory mechanics in adult respiratory distress syndrome.  Intensive Care Med. 1997 Dec;  23 (12) 1219-1224
  • 39 Fridrich P, Krafft P, Hochleuthner H. et al . The effects of long-term prone positioning in patients with trauma-induced adult respiratory distress syndrome.  Anesth Analg. 1996 Dec;  83 (6) 1206-1211
  • 40 Jolliet P, Bulpa P, Chevrolet J C. Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome.  Crit Care Med. 1998 Dec;  26 (12) 1977-1985
  • 41 Gattinoni L, Tognoni G, Pesenti A. et al . Effect of prone positioning on the survival of patients with acute respiratory failure.  N Engl J Med. 2001 Aug 23;  345 (8) 568-573
  • 42 Zapol W M, Snider M T, Hill J D. et al . Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study.  JAMA. 1979 Nov 16;  242 (20) 2193-2196
  • 43 Gattinoni L, Pesenti A, Mascheroni D. et al . Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure.  JAMA. 1986 Aug 15;  256 (7) 881-886
  • 44 Morris A H, Wallace C J, Menlove R L. et al . Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome.  Am J Respir Crit Care Med. 1994 Feb;  149 (2 Pt 1) 295-305
  • 45 Bindslev L. Adult ECMO performed with surface-heparinized equipment.  ASAIO Trans. 1988 Oct;  34 (4) 1009-1013
  • 46 Bindslev L, Eklund J, Norlander O. et al . Treatment of acute respiratory failure by extracorporeal carbon dioxide elimination performed with a surface heparinized artificial lung.  Anesthesiology. 1987 Jul;  67 (1) 117-120
  • 47 Rossaint R, Slama K, Lewandowski K. et al . Extracorporeal lung assist with heparin-coated systems.  Int J Artif Organs. 1992 Jan;  15 (1) 29-34
  • 48 Lewandowski K, Rossaint R, Pappert D. et al . High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation.  Intensive Care Med. 1997 Aug;  23 (8) 819-835
  • 49 Henzler D, Dembinski R, Kopp R. et al . [Treatment of acute respiratory distress syndrome in a treatment center. Success is dependent on risk factors].  Anaesthesist. 2004 Mar;  53 (3) 235-243
  • 50 Lewandowski K, Rossaint R, Pappert D. et al . High survival rate in 122 ARDS patients managed according to a clinical algorithm including extracorporeal membrane oxygenation.  Intensive Care Med. 1997 Aug;  23 (8) 819-835
  • 51 Dembinski R, Kopp R, Henzler D. et al . Extracorporeal gas exchange with the DeltaStream rotary blood pump in experimental lung injury.  Artif Organs. 2003 Jun;  27 (6) 530-536
  • 52 Kopp R, Henzler D, Dembinski R. et al . [Extracorporeal membrane oxygenation by acute respiratory distress syndrome].  Anaesthesist. 2004 Feb;  53 (2) 168-174
  • 53 Rossaint R, Falke K J, Lopez F. et al . Inhaled nitric oxide for the adult respiratory distress syndrome.  N Engl J Med. 1993 Feb 11;  328 (6) 399-405
  • 54 Troncy E, Collet J P, Shapiro S. et al . Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study.  Am J Respir Crit Care Med. 1998 May;  157 (5 Pt 1) 1483-1488
  • 55 Dellinger R P, Zimmerman J L, Taylor R W. et al . Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group.  Crit Care Med. 1998 Jan;  26 (1) 15-23
  • 56 Michael J R, Barton R G, Saffle J R. et al . Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS.  Am J Respir Crit Care Med. 1998 May;  157 (5 Pt 1) 1372-1380
  • 57 Taylor R W, Zimmerman J L, Dellinger R P. et al . Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial.  JAMA. 2004 Apr 7;  291 (13) 1603-1609
  • 58 Luhr O, Nathorst-Westfelt U, Lundin S. et al . A retrospective analysis of nitric oxide inhalation in patients with severe acute lung injury in Sweden and Norway 1991 - 1994.  Acta Anaesthesiol Scand. 1997 Nov;  41 (10) 1238-1246
  • 59 Clark R H. High-frequency oscillatory ventilation in pediatric respiratory failure: a multicenter experience.  Crit Care Med. 2000 Dec;  28 (12) 3941-3942
  • 60 Clark R H, Slutsky A S, Gerstmann D R. Lung protective strategies of ventilation in the neonate: what are they?.  Pediatrics. 2000 Jan;  105 (1 Pt 1) 112-114
  • 61 Rossaint R, Falke K J, Lopez F. et al . Inhaled nitric oxide for the adult respiratory distress syndrome.  N Engl J Med. 1993 Feb 11;  328 (6) 399-405
  • 62 Pappert D, Busch T, Gerlach H. et al . Aerosolized prostacyclin versus inhaled nitric oxide in children with severe acute respiratory distress syndrome.  Anesthesiology. 1995 Jun;  82 (6) 1507-1511
  • 63 Walmrath D, Schneider T, Schermuly R. et al . Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome.  Am J Respir Crit Care Med. 1996 Mar;  153 (3) 991-996

Bereits erschienene Beiträge dieser Serie

Prof. Dr. med. R. Kuhlen

Klinik für Intensivmedizin Helios Klinikum Berlin Buch

Hobrechtsfelder Chaussee 100

13125 Berlin

Email: rkuhlen@berlin.helios-kliniken.de

    >