ABSTRACT
Porphyria cutanea tarda (PCT) is caused by disruption of heme biosynthesis at the step catalyzed by uroporphyrinogen decarboxylase. The patients present with photosensitive cutaneous lesions, hepatic pathology (including elevated porphyrin levels), and increased excretion of porphyrins. Therapy consists of removing the exacerbating factors of PCT (reduced sunlight exposure, abstinence from alcohol use, decreased estrogen exposure, and treatment for viral infections), decreasing body iron stores (by therapeutic phlebotomy or by the use of the new orally active iron chelators), and, in some instances, the use of low-dose antimalarials. Recent advances in genetics and genomics have allowed DNA testing for porphyria cutanea tarda and are likely to be instrumental in developing improved, gene-based treatments and in finding genetic loci (in addition to uroporphyrinogen decarboxylase) involved in the clinical expression of this disease.
KEYWORDS
Porphyria cutanea tarda - heme biosynthesis - genetics - genomics
REFERENCES
1
Waldenstrom J.
Studien ueber Porphyrie.
Acta Med Scand.
1937;
82(suppl)
1-254
2
Elder G H.
Porphyria cutanea tarda.
Semin Liver Dis.
1998;
18
67-75
3
Sweeney G D.
Porphyria cutanea tarda, or the uroporphyrinogen decarboxylase deficiency diseases.
Clin Biochem.
1986;
19
3-15
4
Moran M J, Fontanellas A, Brudieux E et al..
Hepatic uroporphyrinogen decarboxylase activity in porphyria cutanea tarda patients: the influence of virus C infection.
Hepatology.
1998;
27
584-589
5
Elder G H.
The cutaneous porphyrias.
Semin Dermatol.
1990;
9
63-69
6
O'Reilly F M, Darby C, Fogarty J et al..
Screening of patients with iron overload to identify hemochromatosis and porphyria cutanea tarda.
Arch Dermatol.
1997;
133
1098-1101
7
Bonkovsky H L, Lambrecht R W, Shan Y.
Iron as a co-morbid factor in nonhemochromatotic liver disease.
Alcohol.
2003;
30
137-144
8
Bonkovsky H L, Lambrecht R W.
Iron-induced liver injury.
Clin Liver Dis.
2000;
4
409-429
9
Alla V, Bonkovsky H L.
Iron in nonhemochromatotic liver disorders.
Semin Liver Dis.
2005;
25
461-472
10
Felsher B F, Kushner J P.
Hepatic siderosis and porphyria cutanea tarda: relation of iron excess to the metabolic defect.
Semin Hematol.
1977;
14
243-251
11
Lambrecht R W, Jacobs J M, Sinclair P R, Sinclair J F.
Inhibition of uroporphyrinogen decarboxylase activity: the role of cytochrome P-450-mediated uroporphyrinogen oxidation.
Biochem J.
1990;
269
437-441
12
Lambrecht R W, Bonkovsky H L.
Hemochromatosis and porphyria.
Semin Gastrointest Dis.
2002;
13
109-119
13
Mukerji S K.
Haem biosynthesis and human porphyria cutanea tarda: effects of alcohol intake.
Indian J Exp Biol.
2000;
38
635-642
14
Daniell W E, Stockbridge H L, Labbe R F et al..
Environmental chemical exposures and disturbances of heme synthesis.
Environ Health Perspect.
1997;
105(suppl 1)
37-53
15
Mor Z, Caspi E.
Cutaneous complications of hormonal replacement therapy.
Clin Dermatol.
1997;
15
147-154
16
Sterling R K, Bralow S.
Extrahepatic manifestations of hepatitis C virus.
Curr Gastroenterol Rep.
2006;
8
53-59
17
Almehmi A, Deliri H, Szego G G et al..
Porphyria cutanea tarda in a patient with HIV-infection.
W V Med J.
2005;
101
19-21
18
Bonkovsky H L, Poh-Fitzpatrick M, Pimstone N et al..
Porphyria cutanea tarda, hepatitis C, and HFE gene mutations in North America.
Hepatology.
1998;
27
1661-1669
19
Kondo M, Yano Y, Shirataka M, Urata G, Sassa S.
Porphyrias in Japan: compilation of all cases reported through 2002.
Int J Hematol.
2004;
79
448-456
20
Badminton M N, Elder G H.
Molecular mechanisms of dominant expression in porphyria.
J Inherit Metab Dis.
2005;
28
277-286
21
Elder G H, Urquhart A J, De Salamanca R E, Munoz J J, Bonkovsky H L.
Immunoreactive uroporphyrinogen decarboxylase in the liver in porphyria cutanea tarda.
Lancet.
1985;
2
229-233
22
Egger N G, Goeger D E, Payne D A et al..
Porphyria cutanea tarda: multiplicity of risk factors including HFE mutations, hepatitis C, and inherited uroporphyrinogen decarboxylase deficiency.
Dig Dis Sci.
2002;
47
419-426
23
Armstrong D K, Sharpe P C, Chambers C R et al..
Hepatoerythropoietic porphyria: a missense mutation in the UROD gene is associated with mild disease and an unusual porphyrin excretion pattern.
Br J Dermatol.
2004;
151
920-923
24
Elder G H, Smith S G, Herrero C et al..
Hepatoerythropoietic porphyria: a new uroporphyrinogen decarboxylase defect or homozygous porphyria cutanea tarda?.
Lancet.
1981;
1
916-919
25
Cruz-Rojo J, Fontanellas A, Moran-Jimenez M J et al..
Precipitating/aggravating factors of porphyria cutanea tarda in Spanish patients.
Cell Mol Biol (Noisy-le-grand).
2002;
48
845-852
26
Pimstone N R.
Hematologic and hepatic manifestations of the cutaneous porphyrias.
Clin Dermatol.
1985;
3
83-102
27
Bonkovsky H L.
Mechanism of iron potentiation of hepatic uroporphyria: studies in cultured chick embryo liver cells.
Hepatology.
1989;
10
354-364
28
Fracanzani A L, Taioli E, Sampietro M et al..
Liver cancer risk is increased in patients with porphyria cutanea tarda in comparison to matched control patients with chronic liver disease.
J Hepatol.
2001;
35
498-503
29
Shehan J M, Huerter C J.
Porphyria cutanea tarda associated with an acute gastrointestinal bleed: the roles of supplemental iron and blood transfusion.
Cutis.
2001;
68
147-150
30
Chemmanur A T, Bonkovsky H L.
Hepatic porphyrias: diagnosis and management.
Clin Liver Dis.
2004;
8
807-838
31
Badiu C, Cristofor D, Voicu D, Coculescu M.
Diagnostic traps in porphyria: case report and literature review.
Rev Med Chir Soc Med Nat Iasi.
2004;
108
584-591
32
Lockwood W H, Poulos V, Rossi E, Curnow D H.
Rapid procedure for fecal porphyrin assay.
Clin Chem.
1985;
31
1163-1167
33
Cooper C L, Stob C M, Jones M A, Lash T D.
Metabolism of pentacarboxylate porphyrinogens by highly purified human coproporphyrinogen oxidase: further evidence for the existence of an abnormal pathway for heme biosynthesis.
Bioorg Med Chem.
2005;
13
6244-6251
34
Lim C K, Peters T J.
Urine and faecal porphyrin profiles by reversed-phase high-performance liquid chromatography in the porphyrias.
Clin Chim Acta.
1984;
139
55-63
35
Kostler E, Wollina U.
Therapy of porphyria cutanea tarda.
Expert Opin Pharmacother.
2005;
6
377-383
36
Freesemann A, Frank M, Sieg I, Doss M O.
Treatment of porphyria cutanea tarda by the effect of chloroquine on the liver.
Skin Pharmacol.
1995;
8
156-161
37
Drago F, Battifoglio M L, Gelati G, Rebora A.
Very low-dose chloroquine treatment for porphyria cutanea tarda.
Acta Derm Venereol.
1995;
75
329-330
38
Berk D R, Mallory S B, Keeffe E B, Ahmed A.
Dermatologic disorders associated with chronic hepatitis C: effect of interferon therapy.
Clin Gastroenterol Hepatol.
2006;
, August 16 (Epub ahead of print)
39
Hift R J, Corrigall A V, Hancock V et al..
Porphyria cutanea tarda: the etiological importance of mutations in the HFE gene and viral infection is population-dependent.
Cell Mol Biol (Noisy-le-grand).
2002;
48
853-859
40
Ajioka R S, Phillips J D, Kushner J P.
Biosynthesis of heme in mammals.
Biochim Biophys Acta.
2006;
1763
723-736
41
Ponka P.
Cell biology of heme.
Am J Med Sci.
1999;
318
241-256
42
Tsiftsoglou A S, Tsamadou A I, Papadopoulou L C.
Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects.
Pharmacol Ther.
2006;
111
327-345
43
Ibraham N G, Friedland M L, Levere R D.
Heme metabolism in erythroid and hepatic cells.
Prog Hematol.
1983;
13
75-130
44
Taketani S.
Acquisition, mobilization and utilization of cellular iron and heme: endless findings and growing evidence of tight regulation.
Tohoku J Exp Med.
2005;
205
297-318
45
Podvinec M, Handschin C, Looser R, Meyer U A.
Identification of the xenosensors regulating human 5-aminolevulinate synthase.
Proc Natl Acad Sci USA.
2004;
101
9127-9132
46
Surinya K H, Cox T C, May B K.
Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene: identification of promoter elements and role of regulatory proteins.
J Biol Chem.
1997;
272
26585-26594
47
Munakata H, Sun J Y, Yoshida K et al..
Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase.
J Biochem (Tokyo).
2004;
136
233-238
48
Cable E E, Gildemeister O S, Pepe J A et al..
Hepatic 5-aminolevulinic acid synthase mRNA stability is modulated by inhibitors of heme biosynthesis and by metalloporphyrins.
Eur J Biochem.
1996;
240
112-117
49
Kolluri S, Sadlon T J, May B K, Bonkovsky H L.
Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH.
Biochem J.
2005;
392
173-180
50
Lincoln B C, Aw T Y, Bonkovsky H L.
Heme catabolism in cultured hepatocytes: evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin.
Biochim Biophys Acta.
1989;
992
49-58
51
Maines M D, Trakshel G M, Kutty R K.
Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible.
J Biol Chem.
1986;
261
411-419
52
Sun J, Hoshino H, Takaku K et al..
Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene.
EMBO J.
2002;
21
5216-5224
53
Sun J, Brand M, Zenke Y et al..
Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network.
Proc Natl Acad Sci USA.
2004;
101
1461-1466
54
Shan Y, Lambrecht R W, Ghaziani T, Donohue S E, Bonkovsky H L.
Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells: insights from studies with small interfering RNAS.
J Biol Chem.
2004;
279
51769-51774
55
Shan Y, Lambrecht R W, Bonkovsky H L.
Identification of key elements that are responsible for heme-mediated induction of the avian heme oxygenase-1 gene.
Biochim Biophys Acta.
2004;
1679
87-94
56
Wijayanti N, Katz N, Immenschuh S.
Biology of heme in health and disease.
Curr Med Chem.
2004;
11
981-986
57
Phillips J D, Jackson L K, Bunting M et al..
A mouse model of familial porphyria cutanea tarda.
Proc Natl Acad Sci USA.
2001;
98
259-264
58
Rao A U, Carta L K, Lesuisse E, Hamza I.
Lack of heme synthesis in a free-living eukaryote.
Proc Natl Acad Sci USA.
2005;
102
4270-4275
59
Rothstein M, Coppens M.
Nutritional factors and conditions for the axenic culture of free-living nematodes.
Comp Biochem Physiol B.
1978;
61
99-104
60
Whitby F G, Phillips J D, Kushner J P, Hill C P.
Crystal structure of human uroporphyrinogen decarboxylase.
EMBO J.
1998;
17
2463-2471
61
Martins B M, Grimm B, Mock H P, Huber R, Messerschmidt A.
Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum : implications for the catalytic mechanism.
J Biol Chem.
2001;
276
44108-44116
62
Romana M, Le Boulch P, Romeo P H.
Rat uroporphyrinogen decarboxylase cDNA: nucleotide sequence and comparison to human uroporphyrinogen decarboxylase.
Nucleic Acids Res.
1987;
15
7211
63
Phillips J D, Parker T L, Schubert H L et al..
Functional consequences of naturally occurring mutations in human uroporphyrinogen decarboxylase.
Blood.
2001;
98
3179-3185
64
Smith A G, Francis J E.
Investigations of rat liver uroporphyrinogen decarboxylase: comparisons of porphyrinogens I and III as substrates and the inhibition by porphyrins.
Biochem J.
1981;
195
241-250
65
Sinclair P, Lambrecht R, Sinclair J.
Evidence for cytochrome P450-mediated oxidation of uroporphyrinogen by cell-free liver extracts from chick embryos treated with 3-methylcholanthrene.
Biochem Biophys Res Commun.
1987;
146
1324-1329
66
Jacobs J M, Sinclair P R, Bement W J et al..
Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450: essential role of cytochrome P-450d.
Biochem J.
1989;
258
247-253
67
Jacobs J M, Sinclair P R, Lambrecht R W, Sinclair J F, Jacobs N J.
Role of inducer binding in cytochrome P-450 IA2-mediated uroporphyrinogen oxidation.
J Biochem Toxicol.
1990;
5
193-199
68
Romana M, Dubart A, Beaupain D et al..
Structure of the gene for human uroporphyrinogen decarboxylase.
Nucleic Acids Res.
1987;
15
7343-7356
69
Hansen J L, Pryor M A, Kennedy J B, Kushner J P.
Steady-state levels of uroporphyrinogen decarboxylase mRNA in lymphoblastoid cell lines from patients with familial porphyria cutanea tarda and their relatives.
Am J Hum Genet.
1988;
42
847-853
70
Harraway J R, Florkowski C M, Sies C, George P M.
Dual porphyria with mutations in both the UROD and HMBS genes.
Ann Clin Biochem.
2006;
43
80-82
71
Christiansen L, Brons-Poulsen J, Horder M, Brock A, Petersen N E.
Expression and characterization of six clinically relevant uroporphyrinogen decarboxylase gene mutations.
Scand J Clin Lab Invest.
2005;
65
227-235
72
Mendez M, Rossetti M V, Del C Batlle A M, Parera V E.
The role of inherited and acquired factors in the development of porphyria cutanea tarda in the Argentinean population.
J Am Acad Dermatol.
2005;
52
417-424
73
Poblete-Gutierrez P, Mendez M, Wiederholt T et al..
The molecular basis of porphyria cutanea tarda in Chile: identification and functional characterization of mutations in the uroporphyrinogen decarboxylase gene.
Exp Dermatol.
2004;
13
372-379
74
Martinez di Montemuros F, Tavazzi D, Patti E, Cappellini M D.
Human gene mutations. Gene symbol: UROD. Disease: porphyria, cutanea tarda.
Hum Genet.
2004;
114
221
75
Martinez di Montemuros F, Tavazzi D, Patti E, Cappellini M D.
Gene symbol: UROD. Disease: porphyria, cutanea tarda.
Hum Genet.
2003;
113
368
76
Martinez di Montemuros F, Di Pierro E, Patti E et al..
Molecular characterization of porphyrias in Italy: a diagnostic flow-chart.
Cell Mol Biol (Noisy-le-grand).
2002;
48
867-876
77
Ged C, Ozalla D, Herrero C et al..
Description of a new mutation in hepatoerythropoietic porphyria and prenatal exclusion of a homozygous fetus.
Arch Dermatol.
2002;
138
957-960
78
Cappellini M D, Martinez di Montemuros F, Tavazzi D et al..
Seven novel point mutations in the uroporphyrinogen decarboxylase (UROD) gene in patients with familial porphyria cutanea tarda (f-PCT).
Hum Mutat.
2001;
17
350
79
Christiansen L, Ged C, Hombrados I et al..
Screening for mutations in the uroporphyrinogen decarboxylase gene using denaturing gradient gel electrophoresis: identification and characterization of six novel mutations associated with familial PCT.
Hum Mutat.
1999;
14
222-232
80
McManus J F, Begley C G, Sassa S, Ratnaike S.
Three new mutations in the uroporphyrinogen decarboxylase gene in familial porphyria cutanea tarda: mutation in brief no. 237. Online.
Hum Mutat.
1999;
13
412
81
McManus J F, Begley C G, Sassa S, Ratnaike S.
Five new mutations in the uroporphyrinogen decarboxylase gene identified in families with cutaneous porphyria.
Blood.
1996;
88
3589-3600
82
Garey J R, Hansen J L, Harrison L M, Kennedy J B, Kushner J P.
A point mutation in the coding region of uroporphyrinogen decarboxylase associated with familial porphyria cutanea tarda.
Blood.
1989;
73
892-895
83
Garey J R, Harrison L M, Franklin K F et al..
Uroporphyrinogen decarboxylase: a splice site mutation causes the deletion of exon 6 in multiple families with porphyria cutanea tarda.
J Clin Invest.
1990;
86
1416-1422
84
Peters H A, Cripps D J, Lambrecht R W et al..
History and geography of hexachlorobenzene poisoning in southeastern Turkey.
IARC Sci Publ.
1986;
(77)
131-132
85
Erturk E, Lambrecht R W, Peters H A et al..
Oncogenicity of hexachlorobenzene.
IARC Sci Publ.
1986;
(77)
417-423
86
Lambrecht R W, Sinclair P R, Bement W J, Sinclair J F.
Uroporphyrin accumulation in cultured chick embryo hepatocytes: comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,4,3′,4′-tetrachlorobiphenyl.
Toxicol Appl Pharmacol.
1988;
96
507-516
87
Gorman N, Ross K L, Walton H S et al..
Uroporphyria in mice: thresholds for hepatic CYP1A2 and iron.
Hepatology.
2002;
35
912-921
88
Lambrecht R W, Sinclair P R, Bement W J et al..
Hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase activity in cultured chick-embryo hepatocytes and in Japanese quail (Coturnix coturnix japonica ) and mice treated with polyhalogenated aromatic compounds.
Biochem J.
1988;
253
131-138
89
Cantoni L, Graziani A, Rizzardini M, Saletti M C.
Porphyrinogenic effect of hexachlorobenzene and 2,3,7,8-tetrachlorodibenzo-para-dioxin: is an inhibitor involved in uroporphyrinogen decarboxylase inactivation?.
IARC Sci Publ.
1986;
(77)
449-456
90
Goldstein J A, Friesen M, Scotti T M et al..
Assessment of the contribution of chlorinated dibenzo-p-dioxins and dibenzofurans to hexachlorobenzene-induced toxicity, porphyria, changes in mixed function oxygenases, and histopathological changes.
Toxicol Appl Pharmacol.
1978;
46
633-649
91
Bowers M A, Luckhurst C L, Davis H A, Woods J S.
Investigation of factors influencing urinary porphyrin excretion in rats: strain, gender, and age.
Fundam Appl Toxicol.
1992;
19
538-544
92
Wang H, Long Q, Marty S D, Sassa S, Lin S.
A zebrafish model for hepatoerythropoietic porphyria.
Nat Genet.
1998;
20
239-243
93
Cappellini M D.
Iron-chelating therapy with the new oral agent ICL670 (Exjade).
Best Pract Res Clin Haematol.
2005;
18
289-298
94
Vanorden H E, Hagemann T M.
Deferasirox: an oral agent for chronic iron overload.
Ann Pharmacother.
2006;
40
1110-1117
95
Fontanellas A, Mazurier F, Moreau-Gaudry F et al..
Correction of uroporphyrinogen decarboxylase deficiency (hepatoerythropoietic porphyria) in Epstein-Barr virus-transformed B-cell lines by retrovirus-mediated gene transfer: fluorescence-based selection of transduced cells.
Blood.
1999;
94
465-474
96
Richard E, Geronimi F, Lalanne M et al..
A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines.
J Gene Med.
2003;
5
737-747
Richard W LambrechtPh.D.
Assistant Professor, Department of Pharmacology, and The Liver-Biliary-Pancreatic Center, University of Connecticut Health Center
263 Farmington Avenue, Farmington, CT 06030-1119