Planta Med 2006; 72(15): 1438-1440
DOI: 10.1055/s-2006-951729
Letter
© Georg Thieme Verlag KG Stuttgart · New York

Antiplasmodial Activity of Compounds from Sloanea rhodantha (Baker) Capuron var. rhodantha from the Madagascar Rain Forest

Shugeng Cao1 , Lalasoa Ranarivelo2 , Michel Ratsimbason2 , Sennen Randrianasolo2 , Fidy Ratovoson3 , Mamisoa Andrianjafy3 , David G. I. Kingston1
  • 1Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • 2Centre National d’Application des Recherches Pharmaceutiques, Antananarivo, Madagascar
  • 3Missouri Botanical Garden, Antananarivo, Madagascar
Biodiversity Conservation and Drug Discovery in Madagascar, Part 22. For Part 21, see ref. 1
Further Information

Publication History

Received: April 20, 2006

Accepted: September 29, 2006

Publication Date:
07 November 2006 (online)

Abstract

Bioassay-directed separation of the butanol-soluble portion of an extract of Sloanea rhodantha (Baker) Capuron var. rhodantha (Elaeocarpaceae) active against the drug-sensitive HB3 strain of Plasmodium falciparum led to the isolation of seven phenolic compounds, gallic acid (1), 3,5-di-O-galloylquinic acid (2), 1,6-di-O-galloyl glucopyranoside (3), 3,4,5-tri-O-galloylquinic acid (4), 1-O-eudesmoylquinic acid (5), 1,2,3,6-tetra-O-galloyl glucopyranoside (6), and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-b-D-glucopyranoside (7). The structure of the new compound 5 was established on the basis of interpretation of its 1D and 2D NMR spectroscopic data. Compounds 2, 3, 4, 6, and 7 showed weak inhibitory activity against the drug-sensitive HB3 and the drug-resistant FCM29 strains of P. falciparum, with IC50 values ranging from 8.0 - 43.0 and 16.1 - 93.0 μg/mL, respectively.

References

  • 1 Cao S, Norris A, Miller J S, Ratovoson F, Birkinshaw C, Andriantsiferana R. et al .Cytotoxic compounds of Physena madagascariensis from the Madagascar rain forest. Nat Prod Rep, in press
  • 2 Greenwood B, Mutabingwa T. Malaria in 2002.  Nature. 2002;  415 670-2
  • 3 Frédérich M, Dogné J M, Angenot L, De Mol P. New trends in anti-malarial agents.  Curr Med Chem. 2002;  9 1435-56
  • 4 White N J. Antimalarial drug resistance.  J Clin Invest. 2004;  113 1084-92
  • 5 Van Agtmael M A, Eggelte T A, Van Boxtel C J. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication.  Trends Pharm Sci. 1999;  20 199-205
  • 6 Schwikkard S, van Heerden F R. Antimalarial activity of plant metabolites.  Nat Prod Rep. 2002;  19 675-92
  • 7 Saxena S, Pant N, Jain D C, Bhakuni R S. Antimalarial agents from plant sources.  Curr Sci. 2003;  85 1314-29
  • 8 Caniato R, Puricelli L. Review: natural antimalarial agents (1995 - 2001).  Crit Rev Plant Sci. 2003;  22 79-105
  • 9 Rodriguez N, Vasquez Y, Hussein A A, Coley P D, Solis P N, Gupta M P. Cytotoxic cucurbitacin constituents from Sloanea zuliaensis.  J Nat Prod. 2003;  66 1515-6
  • 10 Romani A, Pinelli P, Galardi C, Mulinacci N, Tattini M. Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L.  Phytochem Anal. 2002;  13 79-86
  • 11 Haddock E A, Gupta R K, Al-Shafi S MK, Haslam E, Magnolato D J. The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Part 1. Introduction. Naturally occurring galloyl esters.  J Chem Soc Perkin Trans. 1982;  I 2515-24
  • 12 Nishizawa M, Yamagishi T, Dutschman G E, Parker W B, Bodner A J, Kilkuskie R E. et al . Anti-AIDS agents, 1. Isolation and characterization of four new tetragalloylquinic acids as a new class of HIV reverse transcriptase inhibitors from tannic acid.  J Nat Prod. 1989;  52 762-8
  • 13 Verotta L, Dell’Agli M, Giolito A, Guerrini M, Gabalion P, Bosisio E. In vitro antiplastimodial activity of extracts of Tristaniopsis species and identification of the active constituents: Ellagic acid and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-D-glucopyranoside.  J Nat Prod. 2001;  64 603-7
  • 14 Dell’Agli M, Parapini S, Basilico N, Verotta L, Taramelli D, Berry C. et al . In vitro studies on the mechanism of action of two compounds with antiplasmodial activity: Ellagic acid and 3,4,5-trimethoxyphenyl (6′-O-galloyl)-O-β-D-glucopyranoside.  Planta Med. 2003;  69 162-4
  • 15 Warashina T, Nagatani Y, Noro T. Constituents from the bark of Tabebuia impetiginosa .  Phytochemistry. 2004;  65 2003-11
  • 16 Nakagawa H, Takaishi Y, Fujimoto Y, Duque C, Garzon C, Sato M. et al . Chemical constituents from the Colombian medicinal plant Maytenus laevis .  J Nat Prod. 2004;  67 1919-24
  • 17 Lu Y, Sun Y, Foo L Y, McNabb W C, Molan A L. Phenolic glycosides of forage legume Onobrychis viciifolia .  Phytochemistry. 2000;  55 67-75
  • 18 Foo L Y. Amariinic acid and related ellagitannins from Phylannthus amarus .  Phytochemistry. 1995;  39 217-24
  • 19 Sefkow M, Kelling A, Schilde U. First efficient synthesis of 1-, 4-, and 5-caffeoylquinic acid. Eur J Org Chem 2001: 2735-42
  • 20 Williams R B, Norris A, Slebodnick C, Merola J, Miller J S, Andriantsiferana R. et al . Cytotoxic sesquiterpene lactones from Vernonia pachyclada from the Madagascar rainforest.  J Nat Prod. 2005;  68 1371-4
  • 21 Corbett Y, Herrara L, Gonzalez J, Cubilla L, Capson T L, Coley P D. et al . A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity.  Am J Trop Med Hyg. 2004;  70 119-24

Prof. Dr. David G. I. Kingston

Department of Chemistry

M/C 0212

Virginia Polytechnic Institute and State University

Blacksburg

Virginia 24061-0212

USA

Phone: +1-540-231-6570

Fax: +1-540-231-3255

Email: dkingston@vt.edu