Synlett 2006(18): 2921-2928  
DOI: 10.1055/s-2006-951516
LETTER
© Georg Thieme Verlag Stuttgart · New York

Reduction of Allylpalladium(II)chloride Dimer by Formation of Allyloxy­silanes

Scott E. Denmark*, Russell C. Smith
245 Roger Adams Laboratory, Box 18, Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
Fax: +1(217)3333984; e-Mail: denmark@scs.uiuc.edu;
Further Information

Publication History

Received 16 May 2006
Publication Date:
25 October 2006 (online)

Abstract

The reduction of allylpalladium(II)chloride dimer (APC) to a Pd(0) species can be effected by reaction with alkali metal silanolates. The reduction is extremely rapid in the presence of chelating bisphosphine ligands and for a variety of silanolates.

    References and Notes

  • 1a Smidt J. Hafner W. Angew. Chem.  1959,  71:  284 
  • 1b Hüttel R. Kratzer J. Angew. Chem.  1959,  71:  456 
  • 2 Tsuji J. Takahashi H. Morikawa M. Tetrahedron Lett.  1965,  49:  4387 
  • 3 Trost BM. Chem. Rev.  1996,  96:  395 ; and references therein
  • 4 Hayashi T. Uozumi Y. J. Am. Chem. Soc.  1991,  113:  9887 
  • 5 Shirakawa E. Yoshida H. Kurahashi T. Nakao Y. Hiyama T. J. Am. Chem. Soc.  1998,  120:  2975 
  • For representative examples, see:
  • 6a Hiyama T. Hatanaka Y. Pure Appl. Chem.  1994,  66:  1471 
  • 6b Wallow TI. Novak BM. J. Org. Chem.  1994,  59:  5034 
  • 6c Feuerstein M. Doucet H. Santelli M. Tetrahedron Lett.  2004,  45:  8443 
  • 7 Trzeciak AM. Ziólkowski JJ. Coord. Chem. Rev.  2005,  249:  2308 
  • 8a Mason MR. Verkade JG. Organometallics  1992,  11:  2212 
  • 8b Amatore C. Jutand A. Barki’ MAM. Organometallics  1992,  11:  3009 
  • 8c Ozawa F. Kubo A. Hayashi T. Chem. Lett.  1992,  2177 
  • 8d Amatore C. Carre E. Jutand A. Barki’ MAM. Organometallics  1995,  14:  1818 
  • 8e Amatore C. Jutand A. J. Organomet. Chem.  1999,  576:  254 
  • 9 Treciak AM. Ciunik Z. Ziólkowski JJ. Organometallics  2002,  21:  132 
  • 10 Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 ; and references therein
  • 11a Viciu MS. Germaneau RF. Navarro-Fernandez O. Stevens ED. Nolan SP. Organometallics  2002,  21:  5470 
  • 11b Viciu MS. Navarro O. Germaneau RF. Kelly RA. Sommer W. Marion N. Stevens ED. Cavallo L. Nolan SP. Organometallics  2004,  23:  1629 
  • 12 Denmark SE. Kobayashi T. J. Org. Chem.  2003,  68:  5153 
  • 13 Trost BM. Fullerton TJ. J. Am. Chem. Soc.  1973,  95:  292 
  • 14 Denmark SE. Sweis RF. In Metal-Catalyzed Cross-Coupling Reactions   Vol. 1:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004.  Chap. 4.
  • 15a Denmark SE. Wehrli D. Org. Lett.  2000,  2:  565 
  • 15b Denmark SE. Neuville L. Org. Lett.  2000,  2:  3221 
  • 15c Denmark SE. Ober MH. Org. Lett.  2003,  5:  1357 
  • 15d Denmark SE. Ober MH. Adv. Synth. Catal.  2004,  346:  1703 
  • 15e Denmark SE. Yang S.-M. Tetrahedron  2004,  60:  9695 
  • 15f Denmark SE. Yang S.-M. J. Am. Chem. Soc.  2004,  126:  12432 
  • 16 Denmark SE. Baird JD. Chem. Eur. J.  2006,  12:  4954 
  • 18 The formation of Pd(0) from this process was confirmed by the identification of dppbPd(dba) in the reduction mixture from K+ 1a -, dpppPd(allyl)Cl, and dba. In this experiment, no palladium black was observed. The 31P NMR spectrum (CDCl3) of this reaction mixture showed two broad peaks at δ = 23.3 and 17.2 ppm which are in good agreement with those reported by Jutand for this compound (in THF) at δ = 21.3 and 17.5 ppm. No free dppb was observed. See: Amatore C. Broeker G. Jutand A. Khalil F. J. Am. Chem. Soc.  1997,  119:  5176 
  • 19 Cantat T. Génin E. Giroud C. Meyer G. Jutand A. J. Organomet. Chem.  2003,  687:  365 
  • 21a Åkermark B. Zetterberg K. Hansson S. Krakenberger B. Vitagliano A. J. Organomet. Chem.  1987,  335:  133 
  • 21b Oslob JD. Åkermark B. Helquist P. Norrby P. Organometallics  1997,  16:  3015 
  • 21c Kranenburg M. Kamer PCJ. van Leeuwen PWNM. Eur. J. Inorg. Chem.  1998,  25 
  • 21d van Haaren RJ. Goubitz K. Fraanje J. van Strijdonck GPF. Oevering H. Coussens B. Reek JNH. Kamer PCJ. van Leeuwen PWNM. Inorg. Chem.  2001,  40:  3363 
  • 23 Kurts AK. Sakembaeva SM. Beletskaya IP. Reutov OA. Zh. Org. Chim.  1974,  10:  1572 
  • 24a Powell J. Shaw BL. J. Chem. Soc. A  1967,  1839 
  • 24b Åkermark B. Åkermark G. Hegedus LS. Zetterberg K. J. Am. Chem. Soc.  1981,  103:  3037 
  • 25a Braunstein P. Naud F. Dedieu A. Rohmer M.-M. DeCain A. Rettig SJ. Organometallics  2001,  20:  2966 
  • 25b Kollmar M. Helmchen G. Organometallics  2002,  21:  4711 
  • 26 However, this claim has not been established for allylpalladium complexes. See: Mann G. Hartwig JF. J. Am. Chem. Soc.  1996,  118:  13109 
  • 27 Gregg BT. Cutler AR. Organometallics  1994,  13:  1039 
  • 28 The procedure was modified from: Alonso E. Guijarro D. Yus M. Tetrahedron  1995,  51:  11457 
17

Denmark, S. E.; Ober, M. H., unpublished results.

20

The presence of the disiloxane was confirmed by GC-MS analysis. This peak was the major constituent in the GC chromatogram as determined by relative area percents.

22

The stability of the silanolate was tested using 1H NMR spectroscopy. The 1H NMR spectrum of a 0.075 M solution of K+ 1a - in CH2Cl2 was unchanged after standing at r.t. for 5 h.

29

Response Factor (R f ) calculated using: R f = (mmol of internal standard*area of x)/(mmol of x*area of internal standard).