Subscribe to RSS
DOI: 10.1055/s-2006-951505
The Heck Reaction of β-Arylacrylamides: An Approach to 4-Aryl-2-quinolones
Publication History
Publication Date:
25 October 2006 (online)
Abstract
The Heck reaction of β-arylacrylamides with aryl iodides afforded the corresponding vinylic substitution products usually in high yields. The nature of β-substituents, aryl iodides and substituents at the nitrogen atom influences the stereochemical outcome. N,N-Dimethyl-β-arylacrylamides gave vinylic substitution products with higher stereoselectivity than the corresponding N-unsubstituted β-arylacrylamides. β-Arylacrylamides containing ortho-substituents led to the formation of only one stereoisomer. The procedure was used to prepare 4-aryl-2-quinolones from β-(o-bromophenyl)acrylamide through a sequential Heck reaction and copper-catalyzed cyclization process.
Key words
cinnamamides - 2-quinolones - cyclization - palladium catalysis - copper catalysis
-
1a
Amorese A.Arcadi A.Bernocchi E.Cacchi S.Cerrini S.Fedeli W.Ortar G. Tetrahedron 1989, 45: 813 -
1b
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Pace P. Tetrahedron 1996, 56: 6983 -
1c
Cacchi S.Ciattini PG.Morera E.Pace P. Synlett 1996, 545 -
1d
Arcadi A.Cacchi S.Fabrizi G.Marinelli F.Pace P. Synlett 1996, 568 -
1e
Cacchi S.Fabrizi G.Goggiamani A. ARKIVOC 2003, (viii): 58 -
2a
Moreno-Mañas M.Pérez M.Pleeixats R. Tetrahedron Lett. 1999, 37: 7449 -
2b
Gürtler C.Buchwald SL. Chem. Eur. J. 1999, 5: 3107 -
2c
Blettner CG.König WA.Stenzel W.Shotten T. Tetrahedron Lett. 1999, 40: 2101 -
2d
Calò V.Nacci A.Monopoli A.Lopez L.di Cosmo A. Tetrahedron 2001, 57: 6071 -
2e
Littke AF.Fu GC. J. Am. Chem. Soc. 2001, 123: 6989 -
2f
Battistuzzi G.Cacchi S.Fabrizi G. Synlett 2002, 439 -
2g
Caló V.Nacci A.Monopoli A.Laera S.Cioffi N. J. Org. Chem. 2003, 68: 2929 - 3
Cacchi S.Arcadi A. J. Org. Chem. 1983, 48: 4236 - 4
Hiroshige M.Hauske JR.Zhou P. Tetrahedron Lett. 1995, 36: 4567 - 5
Botella L.Nájera C. J. Org. Chem. 2005, 70: 4360 - See, for example:
-
6a
Kadin SB. inventors; US 4342781. ; Chem. Abstr. 2001, 97, 215790 -
6b
Morwick TM, andPaget CJ. inventors; EP 91795. ; Chem. Abstr. 1983, 100, 103341 -
6c
Curtze J, andKrummel G. inventors; DE 3817711. ; Chem. Abstr. 1989, 112, 235327 - 7 β-Arylacrylamides were prepared in almost quantitative yields from 1 equiv of aryl iodides and 1.1 equiv of acryl-amide or N,N-dimethylacrylamide in MeCN at 100 °C in the presence of 0.01 equiv of the Herrmann catalyst and 3 equiv of Et3N:
Herrmann WA.Brossmer K.Reisinger C.-P.Priermeier T.Beller M.Fischer H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844 - 8
Jeffery T. Tetrahedron Lett. 1985, 26: 2667 - 10
Lane BS.Sames D. Org. Lett. 2004, 6: 2897 - 12
Hay LA.Koenig TM.Ginah FO.Copp JD.Mitchell D. J. Org. Chem. 1998, 63: 5050 - For some recent references, see:
-
13a
Dhanak D,Kaura AC, andShaw A. inventors; WO 2001085172. ; Chem. Abstr. 2001, 135, 357951 -
13b
Norman P. Curr. Opin. Invest. Drugs 2002, 3: 313 -
13c
Venet M.End D.Angibaud P. Curr. Top. Med. Chem. 2003, 3: 1095 -
13d
van Cutsem E.van de Velde H.Karasek P.Oettle H.Vervenne WL.Szawlowski A.Schoffski P.Post S.Verslype C.Neumann H.Safran H.Humblet Y.Perez RJ.Ma Y.von Hoff D. J. Clin. Oncol. 2004, 22: 1430 -
13e
Freeman GA.Andrews CW.Hopkins AL.Lowell GS.Schaller LT.Cowan JR.Gonzales SS.Koszalka GW.Hazen RJ.Boone LR.Ferris RG.Creech KL.Roberts GB.Short SA.Weaver K.Reynolds DJ.Milton J.Ren J.Stuart DI.Stammers DK.Chan JH. J. Med. Chem. 2004, 47: 5923 -
13f
Li Q.Woods KW.Wang W.Lin N.-H.Claiborne A.Gu W.-Z.Cohen J.Stoll VS.Hutchins C.Frost D.Rosenberg SH.Sham HL. Bioorg. Med. Chem. Lett. 2005, 15: 2033 - 14
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 - 15
Klapars A.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 14844
References and Notes
Typical Procedure for the Reaction of β-Arylacrylamides with p
-Iodoanisole.
To a stirred solution of 1h (0.113 g, 0.50 mmol), p-iodo-anisole (0.093 mg, 0.75 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.006 g, 0.025 mmol) was added. The reaction mixture was stirred for 12 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatog-raphy (silica gel, 35 g; n-hexane-EtOAc, 30:70) to give 0.144 g (87% yield) of 2h: mp 163-165 °C. IR (KBr): 3294, 3177, 1654 cm-1. 1H NMR (CDCl3): δ = 7.69 (dd, J = 8.4, 1.33 Hz, 1 H), 7.43 (m, 1 H), 7.32-7.27 (m, 3 H), 7.23-7.21 (m, 2 H), 6.87-6.85 (m, 2 H), 6.49 (s, 1 H) 5.28-5.16 (d, 2 H),1.61 (s, 3 H). 13C NMR (CDCl3): δ = 167.2, 160.1, 148.6, 139.0, 132.8, 130.3, 130.2, 129.4, 128.1, 127.4, 122.3, 119.7, 113.6, 54.8. MS: m/z (rel. int.) = 332 (100) [M+], 334 (73), 252 (54). Anal. Calcd for C16H14BrNO2: C, 57.85; H, 4.25; Br, 24.05; N; 4.22. Found: C, 57.77; H, 4.28; Br, 24.02; N, 4.26.
Typical Procedure for the Reaction of β-Arylacrylamides with Ethyl p -Iodobenzoate. To a stirred solution of 1h (0.113 g, 0.50 mmol), ethyl p-iodobenzoate (209 µL, 1.25 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.001 g, 0.005 mmol) was added. The reaction mixture was stirred for 24 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatog-raphy (silica gel, 35 g; n-hexane-EtOAc, 25:75) to give 0.152 g (82% yield) of 2ac: mp 235-237 °C. IR (KBr): 3338, 3181, 1668 cm-1. 1H NMR (CDCl3): δ = 8.03 (d, J = 8.3 Hz, 2 H), 7.69 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.35-7.30 (m, 4 H), 6.61 (s, 1 H) 5.32-5.25 (d, 2 H), 4.37 (q, J = 7.1 Hz, 2 H), 1.38 (t, J = 7.1 Hz, 3 H). 13C NMR (CDCl3): δ = 166.5, 165.5, 147.9, 142.1, 138.2, 132.9, 130.4, 130.3, 129.8, 129.3, 127.5, 126.6, 123.5, 122.2, 60.6, 13.8. MS: m/z (rel. int.) = 374 (50) [M+], 376 (100), 294 (34). Anal. Calcd for C18H16BrNO3: C, 57.77; H, 4.31; Br, 21.35; N; 3.74. Found: C, 57.69; H, 4.35; Br, 21.38; N, 3.70.
16
Typical Procedure for the Preparation of 2-Quinolones 4.
To a stirred solution of 1h (0.113 g, 0.50 mmol), p-iodo-anisole (0.093 g, 0.75 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.006 g, 0.025 mmol) was added. The reaction mixture was stirred for 12 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. Then, 2 mL of dioxane, CuI (0.019 g, 0.1 mmol), NaI (0.149 g, 1 mmol), K3PO4 (0.212 g, 1 mmol), N,N-dimethylethylendiammine (21.3 µL, 0.2 mmol) and were added to the crude mixture. The mixture was stirred for 24 h at 120 °C. Then, the mixture was diluted with EtOAc and washed with a sat. NH4Cl solution. The organic layer was dried over Na2SO4 concentrated under reduced pressure. The residue was purified by chromatography (silica gel, 35 g; n-hexane-EtOAc, 30:70) to give 0.97 g (77% yield) of 4b: mp 196-198 °C. IR (KBr): 3131, 1672 cm-1. 1H NMR (DMSO-d
6): δ = 11.82 (s, 1 H), 7.51 (t, J = 8 Hz, 1 H), 7.44-7.36 (m, 4 H), 7.13-7.07 (m, 3 H), 6.34 (s, 1 H), 3.82 (s, 3 H). 13C NMR (DMSO-d
6): δ = 161.3, 159.6, 151.1, 139.3, 130.4, 130.1, 128.8, 126.2, 121.7, 120.9, 118.5, 115.8, 114.1, 55.2. MS: m/z (rel. int.) = 251 (100) [M+], 252 (25), 236 (25) 220 (12). Anal. Calcd for C16H13NO2: C, 76.48; H, 5.21; N; 5.57. Found: C, 76.55; H, 5.18; N, 5.53.