Subscribe to RSS
DOI: 10.1055/s-2006-951504
An Intramolecular Heck Reaction that Prefers a 5-endo- to a 6-exo-trig
Cyclization Pathway
Publication History
Publication Date:
25 October 2006 (online)
Abstract
A regioselective aromatic Claisen rearrangement was used to prepare 17a, the precursor of triflate 17e. The intramolecular Heck reaction of 17e is promoted only by bidentate phosphine ligands, giving exclusively and in excellent yield 20, the product of a 5-endo-trig cyclization, despite the possibility for a 6-exo-trig pathway.
Key words
intramolecular Heck reaction - 5-endo-trig cyclization - regioselective Claisen rearrangement
-
1a
Takashima M.Sakai H. Bull. Agric. Chem. Soc. Jpn. 1960, 24: 647 -
1b
Takashima M.Sakai H. Bull. Agric. Chem. Soc. Jpn. 1960, 24: 652 -
1c
Takashima M.Sakai H.Arima K. Agric. Biol. Chem. 1962, 26: 660 -
1d
Takashima M.Sakai H.Arima K. Agric. Biol. Chem. 1962, 26: 669 -
2a
Fujiki H.Sugimura T. Cancer Surv. 1983, 2: 539 -
2b
Hitotsuyanagi Y.Fujiki H.Suganuma M.Aimi N.Sakai S.Endo Y.Sugimura T. Chem. Pharm. Bull. 1984, 32: 4233 -
2c
Sakai S.Aimi N.Yamaguchi K.Watanabe C.Hitotsuyanagi Y.Shudo K.Itai A. Chem. Pharm. Bull. 1984, 32: 354 - For selected synthesis of the teleocidins B, see:
-
4a
Okabe K.Muratake H.Natsume M. Tetrahedron 1991, 47: 8559 -
4b
Nakatsuka S.Masuda T.Goto T. Tetrahedron Lett. 1987, 28: 3671 -
4c
For a recent and interesting approach towards the core of the teleocidins B, see:
-
4d
Dangel BD.Godula K.Youn SW.Sezen B.Sames D. J. Am. Chem. Soc. 2002, 124: 11856 -
5a
Kishi Y.Rando RR. Acc. Chem. Res. 1998, 31: 163 -
5b
Newton AC. Chem. Rev. 2001, 101: 2353 -
5c
Hinterding K.Alonso-Díaz D.Waldmann H. Angew. Chem. Int. Ed. 1998, 37: 688 -
5d
Meseguer B.Alonzo-Díaz D.Griebenow N.Herget T.Waldmann H. Chem. Eur. J. 2000, 6: 3943 - For some reviews, see:
-
6a
De Meijere A.Bräse S. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E. John Wiley and Sons; New York: 2002. p.1223 -
6b
Shibasaki M.Vogl EM. J. Organomet. Chem. 1999, 576: 1 -
6c
Link JT. Org. React. 2002, 60: 157 -
7a
Ozawa F.Kubo A.Hayashi T. J. Am. Chem. Soc. 1991, 113: 1417 -
7b
Cabri W.Candiani I.DeBernardinis S.Francalanci F.Penco S. J. Org. Chem. 1991, 56: 5796 -
7c
Fristrup P.Le Quement S.Tanner D.Norrby P.-O. Organometallics 2004, 23: 6160 -
8a
Addition of silver salts to the reaction mixture often allows the use of aryl and vinyl halides in AIHR, see ref. 6.
-
8b For a notorious example of IAHR where the ‘neutral’ pathway affords higher enantioselectivity than the corresponding ‘cationic’, see:
Overman LE.Poon DJ. Angew. Chem., Int. Ed. Engl. 1997, 36: 518 -
9a
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734 -
9b
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 736 -
9c
Grigg R.Sridharan V.Stevenson P.Sukirthalingam S.Worakun T. Tetrahedron 1990, 46: 4003 -
9d
See ref. 6.
- 10 Indole 7 (which for R = Et is indole 13) has previously been used in synthetic studies towards Lyngbyatoxin A, see:
Moody CJ. J. Chem. Soc., Chem. Commun. 1983, 1129 - For selected reviews on the Claisen rearrangement, see:
-
11a
Bennett GB. Synthesis 1977, 589 -
11b
Lutz RP. Chem. Rev. 1984, 84: 205 -
11c
Ito H.Taguchi T. Chem. Soc. Rev. 1999, 28: 43 - 12
Hemetsberger H.Knittel D.Weidmann H. Monatsh. Chem. 1970, 101: 161 - 13
Shinmon N.Cava M. J. Chem. Soc., Chem. Commun. 1980, 1020 - 14
Scheinmann F.Barner R.Schmid H. Helv. Chim. Acta 1968, 51: 1603 -
15a
Karanewsky DS.Kishi Y. J. Org. Chem. 1976, 41: 3026 -
15b
Falling SN.Rapoport H. J. Org. Chem. 1980, 45: 1260 -
15c
Fukuyama T.Tangqing L.Peng G. Tetrahedron Lett. 1994, 35: 2145 - For selected applications in synthesis, see:
-
17a
Martin T.Moody CJ. J. Chem. Soc., Chem. Commun. 1985, 1391 -
17b
MacKenzie AR.Moody CJ.Rees CW. Tetrahedron 1986, 42: 3259 - 18 For a discussion, see:
Jensen F. Introduction to Computational Chemistry Wiley; Chichester: 1999. - For representative examples, see:
-
20a
Ackermann L.Kaspar LT.Gschrei CJ. Chem. Commun. 2004, 2824 -
20b
Watanabe T.Arai S.Nishida A. Synlett 2004, 907 -
20c
Chen C.Lieberman DR.Larsen RD.Verhoeven TR.Reider PJ. J. Org. Chem. 1997, 62: 2676 - 21
O’Connor B.Zhang Y.Negishi E. Tetrahedron Lett. 1988, 29: 3903 - 22
Sakoda K.Mihara J.Ichikawa J. Chem. Commun. 2005, 4684 - 23
Grigg R.Savic V. J. Chem. Soc., Chem. Commun. 2000, 871 -
24a
Wiedenau P.Monse B.Blechert S. Tetrahedron 1995, 51: 1167 ; in particular Scheme 7 -
24b
Gaudin J.-M. Tetrahedron Lett. 1991, 32: 6113 - 26
Capon RJ.MacLeod JK.Scammells PJ. Tetrahedron 1986, 42: 6545 - 27
Herb R.Carroll AR.Yoshida WY.Scheuer PJ.Paul VJ. Tetrahedron 1990, 46: 3089
References and Notes
The numbering system of teleocidins is defined in the following order of preference: the indole ring, the nine-membered lactam ring, and the other substituents.
16
Procedure for the Preparation of 17a.
A solution of indole 13 (1.42 g, 4.16 mmol, 1.0 equiv), HMDS (8.7 mL, 41.8 mmol, 10 equiv) and dimethylaniline (30 mL) in a closed, thick-wall glass container was inserted in a salt bath (53% KNO3, 40% NaNO2 and 7% NaNO3, by weight) at 195 °C until TLC showed no more starting material (aprox. 6-7 h). After reaching r.t., the reaction mixture was partitioned between Et2O (150 mL) and 3 M aq HCl (150 mL); the organic layer was further washed with 3 M aq HCl (100 mL), aq NaHCO3 (two portions of 120 mL), brine (50 mL) and dried (Na2SO4). The solvent was removed under reduced pressure to afford a tan-colored oil, which was dissolved in EtOH (20 mL). The resulting solution was cooled to ice-bath temperature and treated with 3 M aq HCl (2.5 mL). After approx. 10 min, the reaction mixture was diluted with Et2O (90 mL), washed with aq NaHCO3 (two portions of 40 mL), brine (20 mL) and dried (Na2SO4). The resulting solution was concentrated under vacuum to approx. 1/5 of its original volume and eluted/filtered through a short column of silica gel using hexane-Et2O (2:1). Rearranged indole 17a (1.25 g, 88%) was obtained as a thick, light-tan-colored oil. 1H NMR (300 MHz, CDCl3): δ = 9.38 (br s, 1 H), 7.41 (d, J = 8.5 Hz, 1 H), 7.11 (d, J = 2.1 Hz, 1 H), 6.67 (d, J = 8.5 Hz, 1 H), 6.57 (dd, J = 17.8, 10.8 Hz, 1 H), 5.63 (s, 1 H), 5.43 (d, J = 17.8 Hz, 1 H), 5.41 (d, J = 10.8 Hz, 1 H), 5.07 (m, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 2.18-1.76 (m, 4 H), 1.70 (s, 3 H), 1.62 (s, 3 H), 1.44 (s, 3 H), 1.40 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 162.2, 153.0, 148.7, 137.3, 131.9, 126.1, 124.5, 123.8, 122.1, 114.5, 113.3, 113.1, 108.7, 61.0, 45.5, 39.9, 25.9, 25.6, 24.0, 17.4, 14.7.
The structures were optimized at the B3LYP/6-31G* level of theory in Jaguar v. 4.2 from Scrödinger Inc., www.schrodinger.com. The conformations were chosen to represent the immediate product from a chair transition state, as expected for a Claisen rearrangement.
25
Typical Procedure for the Preparation of 20.
A mixture of indole 17e (50 mg, 0.1 mmol, 1.0 equiv), Pd(OAc)2 (2.5 mg, 0.01 mmol, 10 mol%), K2CO3 (44 mg, 0.3 mmol, 3.0 equiv), and the ligand (0.03 mmol, 30 mol%) in degassed THF (2.1 mL) was refluxed for the time shown in Table
[2]
. After cooling to r.t., H2O (2 mL) was added and the mixture was partitioned between Et2O (15 mL) and H2O (10 mL). The organic layer was washed with brine (5 mL), dried (MgSO4) and concentrated under vacuum. The obtained residue was purified by flash chromatography (hexane-ether, 2:1) to afford cyclopentadieno-indole 20 as a faint yellow oil. 1H NMR (300 MHz, CDCl3): δ = 8.63 (br s, 1 H), 7.58 (dd, J = 0.75, 8.1 Hz, 1 H), 7.29 (d, J = 2.0 Hz, 1 H), 7.19 (d, J = 8.1 Hz, 1 H), 6.78 (d, J = 5.4 Hz, 1 H), 6.39 (d, J = 5.4 Hz, 1 H), 4.94 (m, 1 H), 4.43 (q, J = 7.1 Hz, 2 H), 2.10-1.59 (m, 4 H), 1.55 (br s, 3 H), 1.44 (s, 3 H), 1.43 (t, J = 7.1 Hz, 3 H), 1.36 (br s, 3 H).). 13C NMR (75 MHz, CDCl3): δ = 162.5, 144.7, 141.4, 134.1, 132.7, 131.9, 130.1, 127.6, 126.7, 124.4, 121.4, 116.1, 109.9, 61.2, 54.1, 38.0, 25.8, 23.9, 22.8, 17.7, 14.7.