Subscribe to RSS
DOI: 10.1055/s-2006-951492
The Utility of the Classical and Oxidative Heck Reactions in Natural Product Synthesis: Studies Directed toward the Total Synthesis of Dragmacidin F
Publication History
Publication Date:
25 October 2006 (online)
Abstract
The syntheses of complex pyrrole-fused [3.3.1] and [3.3.2] bicycles using classical and oxidative Heck cyclizations are described. While both [3.3.1] and [3.2.2] bicyclic products are formed in the classical Heck reaction, the oxidative Heck cyclization reaction furnishes solely the [3.3.1] bicycle. The [3.3.1] bicyclic product has been used as an intermediate to synthesize the complex marine alkaloid dragmacidin F.
Key words
Heck reaction - palladium - oxidative cyclization - bicyclic compounds - total synthesis
-
1a
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. -
1b
Geissler H. In Transition Metals for Organic SynthesisBeller M.Bolm C. Wiley-VCH; Weinheim: 1998. Chap. 2.10. p.158 -
1c
Tsuji J. In Transition Metal Reagents and Catalysts Wiley; Chichester, UK: 2000. Chap. 3. p.27 - For seminal reports, see:
-
2a
Heck RF.Nolley JP. J. Org. Chem. 1972, 37: 2320 -
2b
Dieck HA.Heck RF. J. Org. Chem. 1975, 40: 1083 -
2c
Tao W.Silverberg LJ.Rheingold AL.Heck RF. Organometallics 1989, 8: 2550 - For recent reviews of the Heck reaction, see:
-
3a
Dounay AB.Overman LE. Chem. Rev. 2003, 103: 2945 -
3b
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009 -
3c
Amatore C.Jutand A. J. Organomet. Chem. 1999, 576: 254 -
3d
Braese S.de Meijere A. In Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1:Negishi E.-I. Wiley; Hoboken, New Jersey: 2002. p.1223-1254 -
3e
Link JT. Org. React. 2002, 60: 157 - 4 The Ni-catalyzed Negishi couplings of secondary halides have also been used to create stereogenic centers. For a pertinent review, see:
Netherton MR.Fu GC. Adv. Synth. Catal. 2004, 346: 1525 -
5a
Garg NK.Caspi DD.Stoltz BM. J. Am. Chem. Soc. 2004, 126: 9552 -
5b
Garg NK.Caspi DD.Stoltz BM. J. Am. Chem. Soc. 2005, 127: 5970 -
7a
Stoltz BM. Chem. Lett. 2004, 33: 362 -
7b
Ferreira EM.Stoltz BM. J. Am. Chem. Soc. 2003, 125: 9578 -
7c
Zhang H.Ferreira EM.Stoltz BM. Angew. Chem. Int. Ed. 2004, 43: 6144 - For catalytic intermolecular oxidative Heck arylations that employ main group organometallic arenes with a range of olefinic coupling partners and Pd(II) catalysis, see:
-
8a
Andappan MMS.Nilsson P.von Schenck H.Larhed M. J. Org. Chem. 2004, 69: 5212 -
8b
Farrington EJ.Brown JM.Barnard CFJ.Rowsell E. Angew. Chem. Int. Ed. 2002, 41: 169 ; and references cited therein - For related examples of Pd-mediated carbocyclizations in natural product synthesis, see:
-
9a
Baran PS.Corey EJ. J. Am. Chem. Soc. 2002, 124: 7904 -
9b
Williams RM.Cao J.Tsujishima H.Cox RJ. J. Am. Chem. Soc. 2003, 125: 12172 - For reviews and examples regarding the use of (-)-quinic acid in natural product synthesis, see:
-
10a
Barco A.Benetti S.De Risi C.Marchetti P.Pollini GP.Zanirato V. Tetrahedron: Asymmetry 1997, 8: 3515 -
10b
Huang P.-Q. Youji Huaxue 1999, 19: 364 -
10c
Hanessian S.Pan J.Carnell A.Bouchard H.Lesage L. J. Org. Chem. 1997, 62: 465 -
10d
Hanessian S. In Total Synthesis of Natural Products: The ‘Chiron’ ApproachBaldwin EJ. Pergamon Press; Oxford: 1983. p.206-208 -
11a
Edwards MP.Ley SV.Lister SG.Palmer BD. J. Chem. Soc., Chem. Commun. 1983, 630 -
11b
Muchowski JM.Solas DR. J. Org. Chem. 1984, 49: 203 -
11c
Edwards MP.Ley SV.Lister SG.Palmer BD.Williams DJ. J. Org. Chem. 1984, 49: 3503 -
11d
Edwards MP.Doherty AM.Ley SV.Organ HM. Tetrahedron 1986, 42: 3723 - 12
Bailey DM.Johnson RE. J. Med. Chem. 1973, 16: 1300 -
13a
Tada H.Tozyo T. Chem. Lett. 1988, 5: 803 -
13b For a discussion regarding the instability of bromopyrroles, see:
Audebert P.Bidan G. Synth. Met. 1986, 15: 9 - 14
Jeffery T.David M. Tetrahedron Lett. 1998, 39: 5751 ; see also references cited therein -
15a
Herrmann WA.Brossmer C.Öfele K.Reisinger C.-P.Priermeier T.Beller M.Fischer H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844 -
15b
Herrmann WA.Brossmer C.Reisinger C.-P.Reirmeier TH.Öfele K.Beller M. Chem. Eur. J. 1997, 3: 1357 -
15c
Herrmann WA.Brossmer C.Öfele K.Beller M.Fischer H. J. Mol. Catal. A: Chem. 1995, 103: 133 -
16a
Littke AF.Fu GC. J. Am. Chem. Soc. 2001, 123: 6989 -
16b
Littke AF.Fu GC. J. Org. Chem. 1999, 64: 10 -
17a
Corey EJ.Guzman-Perez A. Angew. Chem. Int. Ed. 1998, 37: 388 -
17b
Fuji K. Chem. Rev. 1993, 93: 2037 -
17c
Martin SF. Tetrahedron 1980, 36: 419 -
17d
Douglas CJ.Overman LE. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5363 - DMSO has commonly been employed in oxidative Pd(II) chemistry. See:
-
18a
Larock RC.Hightower TR. J. Org. Chem. 1993, 58: 5298 -
18b
Van Benthem RATM.Hiemstra H.Michels JJ.Speckamp WN. J. Chem. Soc., Chem. Commun. 1994, 357 -
18c
Rönn M.Bäckvall J.-E.Andersson PG. Tetrahedron Lett. 1995, 36: 7749 -
18d
Chen MS.White MC. J. Am. Chem. Soc. 2004, 126: 1346 -
18e
Stahl SS. Angew. Chem. Int. Ed. 2004, 43: 3400 , see also references cited therein - Recently, related oxidative cyclizations of pyrrole substrates have been reported. See:
-
19a
Beccalli EM.Broggini G.Martinelli M.Paladino G. Tetrahedron 2005, 61: 1077 -
19b
Beck EM.Grimster NP.Hatley R.Gaunt MJ. J. Am. Chem. Soc. 2006, 128: 2528 - 20
Gilow HM.Hong YH.Millirons PL.Snyder RC.Casteel WJ. J. Heterocycl. Chem. 1986, 23: 1475 - The instability of pyrroles to oxidants is well known. See:
-
22a
Ciamician G.Silber P. Ber. Dtsch. Chem. Ges. 1912, 45: 1842 -
22b
Bernheim F.Morgan JE. Nature (London) 1939, 144: 290 -
22c
Chierici L.Gardini GP. Tetrahedron 1966, 22: 53
References and Notes
In the case of the oxidative Heck route, an alternative Wacker-type mechanism involving nucleophilic attack of a Pd-activated olefin by the pyrrole species cannot be ruled out. It should be noted that in two extensively studied systems for oxidative Heck cyclization, both were shown to involve initial palladation of the aromatic system followed by olefin insertion and β-hydrogen elimination, see ref. 7.
21Reactions conducted in the presence of CH3COOD led to deuterium incorporation in the pyrrole ring of both the starting material (3) and the product (5), mostly at C(4).
23The instability of the starting material and product to oxidation was confirmed by a series of control experiments where aliquots of reactions were carefully monitored by 1H NMR analysis with an internal standard. In the presence of oxidants, substantial non-specific decomposition readily took place.