Horm Metab Res 2006; 38(9): 549-555
DOI: 10.1055/s-2006-950500
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Adenovirus-delivered DKK3/WNT4 and Steroidogenesis in Primary Cultures of Adrenocortical Cells

M. Chen 1 , P. J. Hornsby 1
  • 1Department of Physiology and Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA
Further Information

Publication History

Received 10 May 2006

Accepted after revision 12 June 2006

Publication Date:
18 September 2006 (online)

Abstract

The Wnt family molecules Dickkopf-3 (DKK3) and WNT4 are present at higher concentrations in the zona glomerulosa than in the rest of the adrenal cortex. In order to study direct effects of these proteins on adrenocortical cell function, we created adenoviruses encoding human DKK3 and WNT4. When added to cultured human adrenocortical cells, DKK3 inhibited aldosterone and cortisol biosynthesis, either alone or together with cyclic AMP. WNT4 increased steroidogenesis when added alone but decreased it in the presence of cyclic AMP. A control adenovirus encoding GFP had no effect. RNA was prepared from cultured cells and was assayed by real-time PCR. CYP11A1 (cholesterol side-chain cleavage enzyme), HSD3B2 (3β-hydroxysteroid dehydrogenase type II), CYP17 (17α-hydroxylase), CYP21 (21-hydroxylase) and CYP11B1 (11β-hydroxylase) mRNAs were all increased by cyclic AMP, whereas CYP11B2 (aldosterone synthase) was unaffected. DKK3 decreased cyclic AMP-stimulated CYP17. WNT4 increased both CYP17 and CYP21 in the absence of cyclic AMP. Both DKK3 and WNT4 increased the level of CYP11B2. These data show that these Wnt signaling molecules have multiple actions on steroidogenesis in adrenocortical cells, including effects on overall steroidogenesis (aldosterone and cortisol biosynthesis) and distinct effects on steroidogenic enzyme mRNA levels. The co-localization of DKK3 and WNT4 in the glomerulosa and their stimulation of CYP11B2 imply an action on glomerulosa-specific function.

References

  • 1 Logan CY, Nusse R. The Wnt signaling pathway in development and disease.  Annu Rev Cell Dev Biol. 2004;  20 781-810
  • 2 Wang J, Wynshaw-Boris A. The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation.  Curr Opin Genet Dev. 2004;  14 533-539
  • 3 Megason SG, McMahon AP. A mitogen gradient of dorsal midline Wnts organizes growth in the CNS.  Development. 2002;  129 2087-2098
  • 4 Charron F, Tessier-Lavigne M. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance.  Development. 2005;  132 2251-2262
  • 5 Suwa T, Chen M, Hawks CL, Hornsby PJ. Zonal expression of Dickkopf-3 and components of the Wnt signalling pathways in the human adrenal cortex.  J Endocrinol. 2003;  178 149-158
  • 6 Heikkila M, Peltoketo H, Leppaluoto J, Ilves M, Vuolteenaho O, Vainio S. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production.  Endocrinology. 2002;  143 4358-4365
  • 7 Curnow KM, Tusie-Luna M-T, Pascoe L, Natarajan R, Gu J-L, Nadler JL, White PC. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex.  Mol Endocrinol. 1991;  5 1513-1522
  • 8 Vainio SJ, Itaranta PV, Perasaari JP, Uusitalo MS. Wnts as kidney tubule inducing factors.  Int J Dev Biol. 1999;  43 419-423
  • 9 Park SY, Jameson JL. Minireview: transcriptional regulation of gonadal development and differentiation.  Endocrinology. 2005;  146 1035-1042
  • 10 Heikkila M, Prunskaite R, Naillat F, Itaranta P, Vuoristo J, Leppaluoto J, Peltoketo H, Vainio S. The partial female to male sex reversal in Wnt-4-deficient females involves induced expression of testosterone biosynthetic genes and testosterone production, and depends on androgen action.  Endocrinology. 2005;  146 4016-4023
  • 11 Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4.  Nature. 1994;  372 679-683
  • 12 Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo.  Genes Dev. 1998;  12 1691-1704
  • 13 Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling.  Genes Dev. 2000;  14 650-654
  • 14 Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J. Wnt-1 and Wnt-4 regulate thymic cellularity.  Eur J Immunol. 2002;  32 967-971
  • 15 Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy.  Proc Natl Acad Sci USA. 2003;  100 10866-10871
  • 16 Gummow BM, Winnay JN, Hammer GD. Convergence of Wnt signaling and steroidogenic factor-1 (SF-1) on transcription of the rat inhibin alpha gene.  J Biol Chem. 2003;  278 26572-26579
  • 17 Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R, Kuo CJ. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1.  Proc Natl Acad Sci USA. 2004;  101 266-271
  • 18 Miller WL. Regulation of messenger RNAs for human steroidogenic enzymes.  Endocrine Res. 1989;  15 1-16
  • 19 Ilvesmaki V, Voutilainen R. Interaction of phorbol ester and adrenocorticotropin in the regulation of steroidogenic P450 genes in human fetal and adult adrenal cell cultures.  Endocrinology. 1991;  128 1450-1458
  • 20 Staels B, Hum DW, Miller WL. Regulation of steroidogenesis in NCI-H295 cells: A cellular model of the human fetal adrenal.  Mol Endocrinol. 1993;  7 423-433
  • 21 Yagci A, Oertle M, Seiler H, Schmid D, Campofranco C, Muller J. Potassium induces multiple steroidogenic enzymes in cultured rat zona glomerulosa cells.  Endocrinology. 1996;  137 2406-2414
  • 22 Holland OB, Mathis JM, Bird IM, Rainey WE. Angiotensin increases aldosterone synthase mRNA levels in human NCI-H295 cells.  Mol Cell Endocrinol. 1993;  94 R9-R13
  • 23 Denner K, Rainey WE, Pezzi V, Bird IM, Bernhardt R, Mathis JM. Differential regulation of 11 beta-hydroxylase and aldosterone synthase in human adrenocortical H295R cells.  Mol Cell Endocrinol. 1996;  121 87-91
  • 24 Hilscherova K, Jones PD, Gracia T, Newsted JL, Zhang X, Sanderson JT, Yu RM, Wu RS, Giesy JP. Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR.  Toxicol Sci. 2004;  81 78-89
  • 25 Clyne CD, Zhang Y, Slutsker L, Mathis JM, White PC, Rainey WE. Angiotensin II and potassium regulate human CYP11B2 transcription through common cis-elements.  Mol Endocrinol. 1997;  11 638-649
  • 26 Bassett MH, White PC, Rainey WE. The regulation of aldosterone synthase expression.  Mol Cell Endocrinol. 2004;  217 67-74
  • 27 Endoh A, Kristiansen SB, Casson PR, Buster JE, Hornsby PJ. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3β-hydroxysteroid dehydrogenase.  J Clin Endocrinol Metab. 1996;  81 3558-3565
  • 28 Hornsby PJ, McAllister JM. Culturing steroidogenic cells. In: Waterman MR, Johnson EF (eds). Methods in Enzymology. Vol 206 San Diego: Academic 1991: 371-380
  • 29 Lennon G, Auffray C, Polymeropoulos M, Soares MB. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression.  Genomics. 1996;  33 151-152
  • 30 Alesci S, Ramsey WJ, Bornstein SR, Chrousos GP, Hornsby PJ, Benvenga S, Trimarchi F, Ehrhart-Bornstein M. Adenoviral vectors can impair adrenocortical steroidogenesis: clinical implications for natural infections and gene therapy.  Proc Natl Acad Sci USA. 2002;  99 7484-7489
  • 31 Mornet E, Vitek A, Dupont J, White PC. Characterization of two genes encoding human steroid 11β-hydroxylase (P-450 11β).  J Biol Chem. 1989;  264 20961-20967
  • 32 Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA. Functional and structural diversity of the human Dickkopf gene family.  Gene. 1999;  238 301-313
  • 33 Naseeruddin SA, Hornsby PJ. Regulation of 11β- and 17α-hydroxylases in cultured bovine adrenocortical cells: cyclic adenosine 3′, 5′-monophosphate, insulin-like growth factor-I, and activators of protein kinase C.  Endocrinology. 1990;  127 1673-1681
  • 34 Cheng CY, Flasch MV, Hornsby PJ. Expression of 17α-hydroxylase and 3β-hydroxysteroid dehydrogenase in fetal human adrenocortical cells transfected with SV40T antigen.  J Mol Endocrinol. 1992;  9 7-17
  • 35 Jefcoate C. High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex.  J Clin Invest. 2002;  110 881-890
  • 36 Papadopoulos V. In search of the function of the peripheral-type benzodiazepine receptor.  Endocr Res. 2004;  30 677-684
  • 37 Stocco DM, Wang X, Jo Y, Manna PR. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought.  Mol Endocrinol. 2005;  19 2647-2659

Correspondence

Peter J. HornsbyPh.D. 

University of Texas Health Science Center

15355 Lambda Drive STCBM 3.100·San Antonio·TX 78245·USA

Phone: +1/210/56 25 08 0

Fax: +1/281/58 23 53 8

Email: hornsby@uthscsa.edu

    >