Horm Metab Res 2006; 38(9): 575-586
DOI: 10.1055/s-2006-950397
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Oxidative Stress in Young Zucker Rats with Impaired Glucose Tolerance is Diminished by Acarbose

P. Rösen 1 , A. Osmers 1
  • 1German Diabetes Centre at the Heinrich-Heine-University, Institute for Clinical Biochemistry and Pathobiochemistry, Leibniz-Centre for Diabetes Research, Düsseldorf, Germany
Further Information

Publication History

Received 2 December 2005

Accepted after revision 26 January 2006

Publication Date:
18 September 2006 (online)

Abstract

Aims/hypothesis: There is evidence that acarbose reduces the risk for development of diabetes and cardiovascular complications. The mechanism underlying the vasculoprotective effect is however not known. We hypothesized that vasculoprotection observed by acarbose may be the consequence of a diminished generation of oxidative stress. Methods: Lean and obese Zucker rats received a diet containing 10% sucrose for 7 days. A part of the rats was treated with acarbose (15 mg/kg/day in chow). Blood glucose, plasma insulin, lipid peroxides, and as a more specific marker of oxidative stress, 8-isoprostanes, were analyzed. As cellular markers of oxidative stress we determined the activities of mitochondrial aconitase and NADPH-oxidase in aorta, heart, and kidney. In addition, poly(ADP-ribose) polymerase activity (PARP) was measured in aorta. Results: Sucrose feeding of obese Zucker rats resulted in increased blood glucose levels, plasma insulin, lipid peroxides and 8-isoprostanes. Mitochondrial aconitase was reduced; the activities of NAPDH-oxidase and PARP were enhanced. Treatment of obese Zucker rats with acarbose largely prevented these changes, whereas it had no effect in lean sucrose fed rats. Conclusion: Specifically in obese Zucker rats sucrose feeding is associated with an increased oxidative stress. The data provide in vivo evidence that mitochondria play a role in the generation of reactive oxygen species (ROS) in insulin resistant, hyperglycaemic states. Activation of PARP by ROS may be an important mediator of vascular dysfunction in insulin resistance. Treatment with acarbose is helpful to prevent the increase in oxidative stress and vascular dysfunction induced by hyperglycemia.

References

  • 1 UK Prospective Diabetes Study (UKPDS) Group . Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34).  Lancet. 1998;  352 865
  • 2 Intensive diabetes management: implications of the DCCT . UKPDS.  Diabetes Educ. 2002;  28 735-740
  • 3 Despres JP, Lamarche B, Mauriege P. et al . Hyperinsulinemia as an independent risk factor for ischemic heart disease.  N Engl J Med. 1996;  334 952-957
  • 4 Pyorälä M, Miettinen H, Halonen P. et al . Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study.  Arterioscler Thromb Vasc Biol. 2000;  20 538-544
  • 5 Tominaga M, Eguchi H, Manaka H. et al . Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study.  Diabetes Care. 1999;  22 920-924
  • 6 Glucose tolerance: mortality: comparison of WHO and American Diabetes Association diagnostic criteria . The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe.  . Lancet. 1999;  354 617-621
  • 7 Henry P, Thomas F, Benetos A. et al . Impaired fasting glucose, blood pressure and cardiovascular disease mortality.  Hypertension. 2002;  40 458-463
  • 8 Liebl A, Neiss A, Spannheimer A. et al . Complications, co-morbidity, and blood glucose control in type 2 diabetes mellitus patients in Germany-results from the CODE-2 study.  Exp Clin Endocrinol Diabetes. 2002;  110 10-16
  • 9 Schafer A, Widder J, Eigenthaler M. et al . Increased platelet activation in young Zucker rats with impaired glucose tolerance is improved by acarbose.  Thromb Haemost. 2004;  92 97-103
  • 10 Du X, Stocklauser-Farber K, Rösen P. Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase?.  Free Radic Biol Med. 1999;  27 752-763
  • 11 Tschoepe D, Roesen P, Schwippert B. et al . Platelets in diabetes: the role in the hemostatic regulation in atherosclerosis.  Semin Thromb Hemost. 1993;  19 122-128
  • 12 Esposito K, Nappo F, Marfella R. et al . Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress.  Circulation. 2002;  106 2067-2072
  • 13 Rösen P, Nawroth PP, King G. et al . The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society.  Diabetes Metab Res Rev. 2001;  17 189-212
  • 14 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 15 Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis.  Free Radic Biol Med. 2000;  28 1708-1716
  • 16 Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications.  Kidney Int Suppl. 2000;  77 S26-S30
  • 17 Inoguchi T, Sonta T, Tsubouchi H. et al . Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.  J Am Soc Nephrol. 2003;  14 S227-S232
  • 18 Wautier MP, Chappey O, Corda S. et al . Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE.  Am J Physiol Endocrinol Metab. 2001;  280 E685-E694
  • 19 Hink U, Li H, Mollnau H. et al . Mechanisms underlying endothelial dysfunction in diabetes mellitus.  Circ Res. 2001;  88 E14-E22
  • 20 Wolff SP. Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications.  Br Med Bull. 1993;  49 642-652
  • 21 Chiasson JL, Josse RG, Gomis R. et al . Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.  Lancet. 2002;  359 2072-2077
  • 22 Chiasson JL, Josse RG, Gomis R. et al . Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial.  JAMA. 2003;  290 486-494
  • 23 Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconitase.  Proc Natl Acad Sci U S A. 1997;  94 11168-11172
  • 24 Bulteau AL, Ikeda-Saito M, Szweda LI. Redox-dependent modulation of aconitase activity in intact mitochondria.  Biochemistry. 2003;  42 14846-14855
  • 25 Gardner PR, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical.  J Biol Chem. 1992;  267 8757-8763
  • 26 Bulteau AL, Ikeda-Saito M, Szweda LI. Redox-dependent modulation of aconitase activity in intact mitochondria.  Biochemistry. 2003;  42 14846-14855
  • 27 Soriano FG, Virag L, Szabo C. Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly (ADP-ribose) polymerase activation.  J Mol Med. 2001;  79 437-448
  • 28 Soriano FG, Pacher P, Mabley J. et al . Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly (ADP-ribose) polymerase.  Circ Res. 2001;  89 684-691
  • 29 National Research Council .Guide for the Care and Use of Laboratory Rats. NIH publ. no. 85-23. 1985 Govt. Printing Office, Washington, DC, US
  • 30 Ritov VB, Kelley DE. Hexokinase isozyme distribution in human skeletal muscle.  Diabetes. 2001;  50 1253-1262
  • 31 Pennington RJ. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase.  Biochem J. 1961;  80 649-654
  • 32 Simonin F, Poch O, Delarue M. et al . Identification of potential active-site residues in the human poly (ADP-ribose) polymerase.  J Biol Chem. 1993;  268 8529-8535
  • 33 Brandes RP. Role of NADPH oxidases in the control of vascular gene expression.  Antioxid Redox Signal. 2003;  5 803-811
  • 34 de Zwart LL, Meerman JH, Commandeur JN. et al . Biomarkers of free radical damage applications in experimental animals and in humans.  Free Radic Biol Med. 1999;  26 202-226
  • 35 Davi G, Ciabattoni G, Consoli A. et al . In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation.  Circulation. 1999;  99 224-229
  • 36 Gopaul NK, Zacharowski K, Halliwell B. et al . Evaluation of the postprandial effects of a fast-food meal on human plasma F(2)-isoprostane levels.  Free Radic Biol Med. 2000;  28 806-814
  • 37 Sampson MJ, Gopaul N, Davies IR. et al . Plasma F2 isoprostanes: direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes.  Diabetes Care. 2002;  25 537-541
  • 38 Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy.  Diabetes Care. 2004;  27 2178-2183
  • 39 Fürnsinn C, Komjati M, Madsen OD. et al . Lifelong sequential changes in glucose tolerance and insulin secretion in genetically obese Zucker rats (fa/fa) fed a diabetogenic diet.  Endocrinology. 1991;  128 1093-1099
  • 40 Inoguchi T, Li P, Umeda F. et al . High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells.  Diabetes. 2000;  49 1939-1945
  • 41 Du XL, Sui GZ, Stockklauser-Farber K. et al . Induction of apoptosis by high proinsulin and glucose in cultured human umbilical vein endothelial cells is mediated by reactive oxygen species [see comments].  Diabetologia. 1998;  41 249-256
  • 42 Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J. et al . Relationships between plasma measures of oxidative stress and metabolic control in NIDDM.  Diabetologia. 1997;  40 647-653
  • 43 Jain SK, Levine SN, Duett J. et al . Elevated lipid peroxidation levels in red blood cells of streptozotocin-treated diabetic rats.  Metabolism. 1990;  39 971-975
  • 44 Gopaul NK, Anggard EE, Mallet AI. et al . Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus.  FEBS Lett. 1995;  368 225-229
  • 45 Frantz S, Calvillo L, Tillmanns J. et al . Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose.  FASEB J. 2005;  19 591-593
  • 46 Lebovitz HE. Postprandial hyperglycaemic state: importance and consequences.  Diabetes Res Clin Pract. 1998;  40 ((Suppl)) S27-S28
  • 47 Vincent AM, Mclean LL, Backus C. et al . Short-term hyperglycemia produces oxidative damage and apoptosis in neurons.  FASEB J. 2005;  19 638-640
  • 48 Rösen P, Wiernsperger N. Metformin delays the manifestation of diabetes and vascular dysfunction in Goto-Kakizaki rats by reduction of mitochondrial oxidative stress. Diabetes Metab Res Rev in press 2006
  • 49 Hammes HP, Du X, Edelstein D. et al . Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.  Nat Med. 2003;  9 294-299
  • 50 Stracke H, Hammes HP, Werkmann D. et al . Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats.  Exp Clin Endocrinol Diabetes. 2001;  109 330-336
  • 51 Inoguchi T, Sonta T, Tsubouchi H. et al . Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.  J Am Soc Nephrol. 2003;  14 S227-S232
  • 52 Inoguchi T, Li P, Umeda F. et al . High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells.  Diabetes. 2000;  49 1939-1945

Correspondence

Prof. Dr. P. Rösen

Institut für Klinische Biochemie und Pathobiochemie·Deutsches Diabetes-Zentrum an der Heinrich-Heine-Universität·Leibniz-Zentrum für Diabetes-Forschung

Auf’m Hennekamp 65· 40225 Düsseldorf·Germany

Phone: +49/211/33 82 562

Email: roesen@uni-duesseldorf.de